User menu

Biophysical studies and intracellular destabilization of pH-sensitive liposomes

Bibliographic reference Van Bambeke, Françoise ; Kerkhofs, Anne ; Schanck, André ; Remacle, Claude ; Sonveaux, Etienne ; et. al. Biophysical studies and intracellular destabilization of pH-sensitive liposomes. In: Lipids, Vol. 35, no. 2, p. 213-223 (2000)
Permanent URL http://hdl.handle.net/2078.1/22604
  1. Straubinger, R.M., Hong, K., Friend, D., and Papahadjopoulos, D. (1983) Endocytosis of Liposomes and Intracellular Fate of Encapsulated Molecules: Encounter with a Low pH Compartment After Internalization in Coated Vesicles,Cell 32, 1069–1079.
  2. Connor, J., Yatvin, M.B., and Huang, L. (1984) pH-Sensitive Liposomes: Acid-Induced Liposome Fusion,Proc. Natl. Acad. Sci. USA 81, 1715–1718.
  3. Chu, C.J., and Szoka, F.C. (1994) pH-Sensitive Liposomes,J. Liposome Res. 4, 361–395.
  4. Chu, C.J., Dijkstra, J., Lai, M.Z., Hong, K., and Szoka, F.C. (1990) Efficiency of Cytoplasmic Delivery by pH-Sensitive Liposomes to Cells in Culture,Pharm. Res. 7, 824–834.
  5. Connor, J., and Huang, L. (1986) pH-Sensitive Immunoliposomes as an Efficient and Target-Specific Carrier for Antitumor Drugs,Cancer Res. 46, 3431–3435.
  6. Lutwyche, P., Cordeiro, C., Wiserman, D.J., St. Louis, M., Uh, M., Hope, M.J., and Finlay, B.B. (1998) Intracellular Delivery and Intracellular Activity of Gentamicin Encapsulated in pH-Sensitive Liposomes,Antimicrob. Agents Chemother. 42, 2511–2520.
  7. Couvreur, P., Fattal, E., Malvy, C., and Dubernet, C. (1997) pH-Sensitive Liposomes: an Intelligent System for the Delivery of Antisense Oligonucleotides,J. Liposome Res. 7, 1–18.
  8. Nair, S., Zhou, F., Reddy, R., Huang, L., and Rouse, B.T. (1992) Soluble Proteins Delivered to Dendritic Cellsvia pH-Sensitive Liposomes Induce Primary Cytotoxic T Lymphocyte Responsesin vitro, J. Exp. Med. 175, 609–612.
  9. Wang, C.Y., and Huang, L. (1987) Plasmid DNA Adsorbed to pH-Sensitive Liposomes Efficiently Transforms the Target Cells,Biochem. Biophys. Res. Commun. 147, 980–985.
  10. Seddon John M., Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids, 10.1016/0304-4157(90)90002-t
  11. Ellens, H., Bentz, J., and Szoka, F.C. (1984) pH-Induced Destabilization of Phosphatidylethanolamine-Containing Liposomes: Role of Bilayer Contact,Biochemistry 23, 1532–1538.
  12. Düzgünes, N., Straubinger, R.M., Baldwin, P.A., Friend, D.S., and Papahadjopoulos, D. (1985) Proton-Induced Fusion of Oleic-Phosphatidylethanolamine Liposomes,Biochemistry 24, 3091–3098.
  13. Liu, D., and Huang, L. (1989) Small, but Not Large, Unilamellar Liposomes Composed of Dioleoylphosphatidylethanolamine and Oleic Acid Can Be Stabilized by Human PlasmaBiochemistry 28, 7700–7707.
  14. Tari, A.M., Fuller, N., Bom, L.T., Collins, D., Rand, P., and Huang, L. (1994) Interactions of Liposome Bilayers Composed of 1,2-Diacyl-3-succinylglycerol with Protons and Divalent Cations,Biochim. Biophys. Acta 1192, 253–262.
  15. Collins, D., Maxfield, F., and Huang, L. (1989) Immunoliposomes with Different Acid Sensitivities as Probes for the Cellular Endocytic Pathway,Biochim. Biophys. Acta 987, 47–55.
  16. Straubinger, R.M., Düzgünes, N., and Papahadjopoulos, D. (1985) pH-Sensitive Liposomes Mediate Cytoplasmic Delivery of Encapsulated Macromolecules,FEBS Lett. 179, 148–154.
  17. Kono, K., Igawa, T., and Takagishi, T. (1997) Cytoplasmic Delivery of Calcein Mediated by Liposomes Modified with a pH-Sensitive Poly(ethylene Glycol) Derivative,Biochim. Biophys. Acta 1325, 143–154.
  18. Lai, M.Z., Vail, W.J., and Szoka, F.C. (1985) Acid- and Calcium-Induced Structural Changes in Phosphatidylethanolamine Membranes Stabilized by Cholesterol Hemisuccinate,Biochemistry 24, 1654–1661.
  19. Hope, M.J., Bally, M.B., Webb, G., and Cullis, P.R. (1985) Production of Large Unilamellar Vesicles by a Rapid Extrusion Procedure. Characterization of Size Distribution, Trapped Volume and Ability to Maintain a Membrane Potential,Biochim. Biophys. Acta 812, 55–65.
  20. Van Bambeke, F., Mingeot-Leclercq, M.P., Schanck, A., Brasseur, R., and Tulkens, P.M. (1993) Alterations in Membrane Permeability Induced by Aminoglycoside Antibiotics: Studies on Liposomes and Cultured Cells,Eur. J. Pharmacol. 247, 155–168.
  21. GRIT MUSTAFA, ZUIDAM NICOLAAS J., UNDERBERG WILLY J. M., CROMMELIN DAAN J. A., Hydrolysis of Partially Saturated Egg Phosphatidylcholine in Aqueous Liposome Dispersions and the Effect of Cholesterol Incorporation on Hydrolysis Kinetics, 10.1111/j.2042-7158.1993.tb05585.x
  22. Weinstein, J.N., Yoshikami, S., Henkart, P., Blumenthal, R., and Hagins, W.A. (1977) Liposome-Cell Interaction: Transfer and Intracellular Release of a Trapped Fluorescent Marker,Science 195, 489–491.
  23. Straubinger, R.M., Papahadjopoulos, D., and Hong, K. (1990) Endocytosis and Intracellular Fate of Liposomes Using Pyranine as a Probe,Biochemistry 29, 4929–4939.
  24. Van Bambeke, F., Tulkens, P.M., Brasseur, R., and Mingeot-Leclercq, M.P. (1995) A minoglycoside Antibiotics Induce A g-gregation but Not Fusion of Negatively-Charged Liposomes,Eur. J. Pharmacol. 289, 321–333.
  25. Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J. (1984) Fluorescence Method for Measuring the Kinetics of Fusion Between Biological Membranes,Biochemistry 23, 5675–5681.
  26. Mazer, N.A., Carey, M.C., Kwasnick, R.F., and Benedek, G.B. (1979) Quasi-elastic Light Scattering Studies of A queous Biliary Lipid Systems. Size, Shape and Thermodynamics of Bile Salt Micelles,Biochemistry 18, 3064–3075. Tumbling and Lateral Dittusion on Phosphatidylcholine Model Membrane31P-NMR Lineshapes,Biochim. Biophys. Acta 603, 63–69.
  27. Schanck, A. (1992) A Method for Determining the Proportions of Different Phases in Hydrated Phospholipids by31P Nuclear Magnetic Resonance (NMR) Spectroscopy,Appl. Spectrosc. 46, 1435–1437.
  28. Snyderman, R., Pike, M.C., Fischer, D.G., and Koren, H.S. (1977) Biologic and Biochemical Activities of Continuous Macrophage Cell Lines P338 D1 and J 774 1,J. Immunol. 119, 2060–2066.
  29. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent,J. Biol. Chem. 193, 265–275.
  30. Straubinger, R.M. (1993) pH-Sensitive Liposomes for Delivery of Macromolecules into Cytoplasm of Cultured Cells,Methods Enzymol. 194, 28–36.
  31. Ellens, H., Bentz, J., and Szoka, F.C. (1985) H+ and Ca2+ Fusion and Destabilization of Liposomes,Biochemistry 24, 3099–3106.
  32. Van Bambeke, F., Mingeot-Leclercq, M.P., Brasseur, R., Tulkens, P.M., and Schanck, A. (1996) Aminoglycoside Antibiotics Prevent the Formation of Non-Bilayer Structures in Negatively-Charged Membranes Comparative Studies Using Fusogenic [bis-(beta-diethylaminoethylether)hexestrol] and Aggregating (spermine) Agents,Chem. Phys. Lipids 79, 123–135.
  33. Mingeot-Leclercq, M.P., Schanck, A., Ronveaux-Dupal, M.F., Deleers, M., Brasseur, R., Ruysschaert, J.M., Laurent, G., and Tulkens, P.M. (1989) Ultrastructural, Physico-Chemical and Conformational Study of the Interactions of Gentamicin and bis(beta-diethylaminoethylether)hexestrol with Negatively-Charged Phospholipid Bilayers,Biochem. Pharmacol. 38, 729–741.
  34. Hubbard, A.L. (1989) Endocytosis,Curr. Opin. Cell Biol. 1, 675–683.
  35. Miller, C.R., Bondurant, B., McLean, S.D., McGovern, K.A., and O'Brien, D.F. (1998) Liposome-Cell Interactionsin vitro: Effect of Liposome Surface Charge on the Binding and Endocytosis of Conventional and Sterically Stabilized Liposomes,Biochemistry 37, 12875–12883.
  36. Gan, B.S., Krump, E., Shrode, L.D., and Grinstein, S. (1998) Loading Pyraninevia Purinergic Receptors or Hypotonic Stress for Measurement of Cytosolic pH by Imaging,Am. J. Physiol. Cell Physiol. 44, C1158-C1166.
  37. Daleke, D.L., Hong, K., and Papahadjopoulos, D. (1990) Endocytosis of Liposomes by Macrophages: Binding, Acidification and Leakage of Liposomes Monitored by a New Fluorescence Assay,Biochim. Biophys. Acta 1024, 352–366.