User menu

Gait in adolescent idiopathic scoliosis: energy cost analysis.

Bibliographic reference Mahaudens, Philippe ; Detrembleur, Christine ; Mousny, Maryline ; Banse, Xavier. Gait in adolescent idiopathic scoliosis: energy cost analysis.. In: European Spine Journal, Vol. 18, no. 8, p. 1160-1168 (2009)
Permanent URL
  1. Barrios C, Perez-Encinas C, Maruenda JI, Laguia M (2005) Significant ventilatory functional restriction in adolescents with mild or moderate scoliosis during maximal exercise tolerance test. Spine 30:1610–1615
  2. Biewener AA, Farley CT, Roberts TJ, Temaner M (2004) Muscle mechanical advantage of human walking and running: implications for energy cost. J Appl Physiol 97:2266–2274
  3. Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39:174–179
  4. Cavagna G. A., Kaneko M., Mechanical work and efficiency in level walking and running, 10.1113/jphysiol.1977.sp011866
  5. Cavagna G A, Thys H, Zamboni A, The sources of external work in level walking and running., 10.1113/jphysiol.1976.sp011613
  6. Cavagna GA, Willems PA, Legramandi MA, Heglund NC (2002) Pendular energy transduction within the step in human walking. J Exp Biol 205:3413–3422
  7. Cobb J (1948) Outline for study of scoliosis. Am Acad Orthop Surg 5:261–275
  8. Corcoran PJ, Brengelmann GL (1970) Oxygen uptake in normal and handicapped subjects, in relation to speed of waing beside velocity-controlled cart. Arch Phys Med Rehabil 51:78–87
  9. Della Croce U, Riley PO, Lelas JL, Kerrigan DC (2001) A refined view of the determinants of gait. Gait Posture 14:79–84
  10. Detrembleur C, Dierick F, Stoquart G, Chantraine F, Lejeune T (2003) Energy cost, mechanical work, and efficiency of hemiparetic walking. Gait Posture 18:47–55
  11. Detrembleur C, van den Hecke A, Dierick F (2000) Motion of the body centre of gravity as a summary indicator of the mechanics of human pathological gait. Gait Posture 12:243–250
  12. Detrembleur C, Vanmarsenille JM, De Cuyper F, Dierick F (2005) Relationship between energy cost, gait speed, vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait. Gait Posture 21:333–340
  13. Dierick Frédéric, Lefebvre Caroline, van den Hecke Adélaïde, Detrembleur Christine, Development of displacement of centre of mass during independent walking in children, 10.1017/s0012162204000891
  14. Dierick F, Penta M, Renaut D, Detrembleur C (2004) A force measuring treadmill in clinical gait analysis. Gait Posture 20:299–303
  15. Kavouras SA, Sarras SE, Tsekouras YE, Sidossis LS (2008) Assessment of energy expenditure in children using the RT3 accelerometer. J Sports Sci 26:959–966
  16. Kerrigan DC, Thirunarayan MA, Sheffler LR, Ribaudo TA, Corcoran PJ (1996) A tool to assess biomechanical gait efficiency; a preliminary clinical study. Am J Phys Med Rehabil 75:3–8
  17. Kerrigan DC, Viramontes BE, Corcoran PJ, LaRaia PJ (1995) Measured versus predicted vertical displacement of the sacrum during gait as a tool to measure biomechanical gait performance. Am J Phys Med Rehabil 74:3–8
  18. Lejeune TM, Willems PA, Heglund NC (1998) Mechanics and energetics of human locomotion on sand. J Exp Biol 201:2071–2080
  19. Lenke Lawrence G., Betz Randal R., Harms Jürgen, Bridwell Keith H., Clements David H., Lowe Thomas G., Blanke Kathy, Adolescent Idiopathic Scoliosis : A New Classification to Determine Extent of Spinal Arthrodesis, 10.2106/00004623-200108000-00006
  20. Mahaudens P, Banse X, Detrembleur C (2008) Effects of short-term brace wearing on the pendulum-like mechanism of walking in healthy subjects. Gait Posture 28 (4):703–707
  21. Massaad F, Dierick F, van den Hecke A, Detrembleur C (2004) Influence of gait pattern on the body’s centre of mass displacement in children with cerebral palsy. Dev Med Child Neurol 46:674–680
  22. McArdle WD, Katch FI, Katch VL (1996) Exercise physiology: energy, nutrition, and human performance, 4th edn. Williams & Wilkins, Baltimore
  23. McNeill Alexander R (2002) Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture. Am J Hum Biol 14:641–648
  24. Monod H, Flandrois R (2003) Physiologie du sport. Bases physiologiques des activités physiques et sportives. Paris
  25. Saunders J. B. dec. M., Inman Verne T., Eberhart Howard D., THE MAJOR DETERMINANTS IN NORMAL AND PATHOLOGICAL GAIT : , 10.2106/00004623-195335030-00003
  26. Stoquart GG, Detrembleur C, Nielens H, Lejeune TM (2005) Efficiency of work production by spastic muscles. Gait Posture 22:331–337
  27. Tesio L, Lanzi D, Detrembleur C (1998) The 3-D motion of the centre of gravity of the human body during level walking. II. Lower limb amputees. Clin Biomech (Bristol, Avon) 13:83–90
  28. van den Hecke Adélaïde, Malghem Christine, Renders Anne, Detrembleur Christine, Palumbo Sara, Lejeune Thierry M., Mechanical Work, Energetic Cost, and Gait Efficiency in Children With Cerebral Palsy : , 10.1097/bpo.0b013e318093f4c3
  29. Waters R L, Barnes G, Husserl T, Silver L, Liss R, Comparable energy expenditure after arthrodesis of the hip and ankle. : , 10.2106/00004623-198870070-00011
  30. Waters R L, Campbell J, Thomas L, Hugos L, Davis P, Energy costs of walking in lower-extremity plaster casts. : , 10.2106/00004623-198264060-00013
  31. Waters RL, Hislop HJ, Thomas L, Campbell J (1983) Energy cost of walking in normal children and teenagers. Dev Med Child Neurol 25:184–188
  32. Waters R L, Lunsford B R, Energy cost of paraplegic locomotion. : , 10.2106/00004623-198567080-00016
  33. Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9:207–231
  34. Willems PA, Cavagna GA, Heglund NC (1995) External, internal and total work in human locomotion. J Exp Biol 198:379–393
  35. Mahaudens P, Banse X, Mousny M, Detrembleur C (2009) Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J 18(4):512–521