User menu

Structure and Reactivity of a Unique Y-Shaped Tricoordinate Bis(silyl)platinum(II)-NHC Complex.

Bibliographic reference Berthon-Gelloz, Guillaume ; de Bruin, Bas ; Tinant, Bernard ; Marko, Istvan. Structure and Reactivity of a Unique Y-Shaped Tricoordinate Bis(silyl)platinum(II)-NHC Complex.. In: Angewandte Chemie (International ed. in English), Vol. 48, no. 17, p. 3161-4 (2009)
Permanent URL http://hdl.handle.net/2078.1/22097
  1. Jiang, Metal-Catalyzed Cross-Coupling Reactions, 699 (2004)
  2. Littke, Angew. Chem., 114, 4350 (2002)
  3. Angew. Chem. Int. Ed. 2002, 41, 4176;
  4. Fu, Acc. Chem. Res., 41, 1555 (2008)
  5. Würtz, Acc. Chem. Res., 41, 1523 (2008)
  6. Martin, Acc. Chem. Res., 41, 1461 (2008)
  7. Marion, Acc. Chem. Res., 41, 1440 (2008)
  8. Kantchev, Angew. Chem., 119, 2824 (2007)
  9. Angew. Chem. Int. Ed. 2007, 46, 2768.
  10. Christmann, Angew. Chem., 117, 370 (2005)
  11. Angew. Chem. Int. Ed. 2005, 44, 366.
  12. Stambuli, J. Am. Chem. Soc., 124, 9346 (2002)
  13. Stambuli, J. Am. Chem. Soc., 126, 1184 (2004)
  14. Cámpora, Angew. Chem., 113, 3753 (2001)
  15. Angew. Chem. Int. Ed. 2001, 40, 3641; for PtII, see:
  16. Ingleson, Chem. Commun., 2398 (2004)
  17. Mole, Organometallics, 10, 49 (1991)
  18. Baratta, Angew. Chem., 115, 109 (2003)
  19. Angew. Chem. Int. Ed. 2003, 42, 105; for a computational analysis, see:
  20. Moncho, Chem. Eur. J., 14, 8986 (2008)
  21. Yamashita, J. Am. Chem. Soc., 126, 5344 (2004)
  22. Markó, Science, 298, 204 (2002)
  23. Markó, Adv. Synth. Catal., 346, 1429 (2004)
  24. Berthon-Gelloz, J. Organomet. Chem., 690, 6156 (2005)
  25. De Bo, Organometallics, 25, 1881 (2006)
  26. Berthon-Gelloz, J. Org. Chem., 73, 4190 (2008)
  27. Crystal data for 2: C43H58N2PtSi2, Mr=854.18 g mol−1, yellow plates, 0.22×0.16×0.14 mm3, monoclinic space group P21/n, a=21.252(7), b=20.315(7), c=21.422(7) Å, β=118.80(2)°, V=8104(5) Å3, Z=8, ρcalcd=1.40 g cm−3, F(000)=2236, T=120(2) K, R1=0.0484, wR2=0.1268, 13 329 independent reflections (2θ=48.8°) and 12 018 parameters. The data were collected with an MAR345 image plate by using MoKα radiation (λ=0.71069 Å). The structure was solved by using direct methods, refined with the SHELX software package (G. Sheldrick, University of Göttingen, 1997), and expanded by using Fourier techniques. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were calculated with AFIX and included in the refinement with a common isotropic temperature factor. CCDC 713799 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  28. Ozawa, Organometallics, 17, 5630 (1998)
  29. Ozawa, J. Organomet. Chem., 611, 332 (2000)
  30. Watanabe, Angew. Chem., 120, 5466 (2008)
  31. Angew. Chem. Int. Ed. 2008, 47, 5386.
  32. Arduengo, Tetrahedron, 55, 14523 (1999)
  33. Pregosin, Coord. Chem. Rev., 44, 247 (1982)
  34. Hu, Organometallics, 23, 755 (2004)
  35. Jacobsen, J. Organomet. Chem., 691, 4350 (2006)
  36. Sanderson, J. Am. Chem. Soc., 128, 16514 (2006)
  37. Khramov, Organometallics, 26, 6042 (2007)
  38. Scott, J. Am. Chem. Soc., 127, 3516 (2005)
  39. Fan, J. Am. Chem. Soc., 130, 17351 (2008)
  40. Michalczyk, J. Am. Chem. Soc., 114, 7955 (1992)
  41. Pan, Organometallics, 11, 3495 (1992)
  42. Roy, J. Am. Chem. Soc., 124, 9510 (2002)
  43. Johnson, Angew. Chem., 120, 852 (2008)
  44. Angew. Chem. Int. Ed. 2008, 47, 840;
  45. Tatsumi, J. Am. Chem. Soc., 106, 8181 (1984)
  46. Corey, Chem. Rev., 99, 175 (1999)
  47. Beletskaya, Chem. Rev., 99, 3435 (1999)
  48. Beletskaya, Chem. Rev., 106, 2320 (2006)
  49. For reviews on the application of bulky ligands in catalysis, see:
  50. For PdII, see:
  51. We reached this conclusion by data mining of the CCDC database.
  52. The 195Pt chemical shift of PtII complexes is commonly between δ=−1500 ppm and δ=−5000 ppm.
  53. All optimized structures, Cartesian coordinates, and significant molecular orbitals are reported in the Supporting Information.
  54. All attempts to optimize a Y-shaped geometry led to convergence to a T-shaped geometry.