User menu

Internal Energy Dissipation in Enceladus's Subsurface Ocean From Tides and Libration and the Role of Inertial Waves

  • Open access
  • PDF
  • 5.26 M
  1. Běhounková Marie, Souček Ondřej, Hron Jaroslav, Čadek Ondřej, Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness, 10.1089/ast.2016.1629
  2. Běhounková Marie, Tobie Gabriel, Choblet Gaël, Čadek Ondřej, Coupling mantle convection and tidal dissipation: Applications to Enceladus and Earth-like planets, 10.1029/2009je003564
  3. Backus George, Poloidal and toroidal fields in geomagnetic field modeling, 10.1029/rg024i001p00075
  4. Backus George, Rieutord Michel, Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid, 10.1103/physreve.95.053116
  5. Baland Rose-Marie, Van Hoolst Tim, Librations of the Galilean satellites: The influence of global internal liquid layers, 10.1016/j.icarus.2010.04.004
  6. Baland Rose-Marie, Yseboodt Marie, Van Hoolst Tim, The obliquity of Enceladus, 10.1016/j.icarus.2015.11.039
  7. Barr Amy C., McKinnon William B., Convection in Enceladus' ice shell: Conditions for initiation : CAN ENCELADUS' ICE SHELL CONVECT?, 10.1029/2006gl028799
  8. Beuthe Mikael, Rivoldini Attilio, Trinh Antony, Enceladus's and Dione's floating ice shells supported by minimum stress isostasy : ENCELADUS'S AND DIONE'S FLOATING SHELLS, 10.1002/2016gl070650
  9. Čadek Ondřej, Tobie Gabriel, Van Hoolst Tim, Massé Marion, Choblet Gaël, Lefèvre Axel, Mitri Giuseppe, Baland Rose-Marie, Běhounková Marie, Bourgeois Olivier, Trinh Anthony, Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data : ENCELADUS'S INTERIOR FROM CASSINI DATA, 10.1002/2016gl068634
  10. Chen E.M.A., Nimmo F., Obliquity tides do not significantly heat Enceladus, 10.1016/j.icarus.2011.06.007
  11. Choblet Gaël, Tobie Gabriel, Sotin Christophe, Běhounková Marie, Čadek Ondřej, Postberg Frank, Souček Ondřej, Powering prolonged hydrothermal activity inside Enceladus, 10.1038/s41550-017-0289-8
  12. Dahlen F. A., Theoretical global seismology (1998)
  13. Greenspan H. P., The theory of rotating fluids (1968)
  14. Hay Hamish C.F.C., Matsuyama Isamu, Numerically modelling tidal dissipation with bottom drag in the oceans of Titan and Enceladus, 10.1016/j.icarus.2016.09.022
  15. Hay Hamish C.F.C., Matsuyama Isamu, Nonlinear tidal dissipation in the subsurface oceans of Enceladus and other icy satellites, 10.1016/j.icarus.2018.09.019
  16. Hemingway Douglas J., Mittal Tushar, Enceladus's ice shell structure as a window on internal heat production, 10.1016/j.icarus.2019.03.011
  17. Howett C. J. A., Spencer J. R., Pearl J., Segura M., High heat flow from Enceladus' south polar region measured using 10–600 cm−1Cassini/CIRS data, 10.1029/2010je003718
  18. Iess L., Stevenson D. J., Parisi M., Hemingway D., Jacobson R. A., Lunine J. I., Nimmo F., Armstrong J. W., Asmar S. W., Ducci M., Tortora P., The Gravity Field and Interior Structure of Enceladus, 10.1126/science.1250551
  19. Ivers D. J. J., Journal of Fluid Mechanics, 468 (2014)
  20. Landau L. D., Course of theoretical physics, vol. 6: Fluid mechanics 2nd ed. (1987)
  21. Lin Yufeng, Ogilvie Gordon I., Tidal dissipation in rotating fluid bodies: the presence of a magnetic field, 10.1093/mnras/stx2764
  22. The Yielding of the Earth to Disturbing Forces 1, 10.1038/080252a0
  23. Matsuyama Isamu, Beuthe Mikael, Hay Hamish C.F.C., Nimmo Francis, Kamata Shunichi, Ocean tidal heating in icy satellites with solid shells, 10.1016/j.icarus.2018.04.013
  24. Morize C., Le Bars M., Le Gal P., Tilgner A., Experimental Determination of Zonal Winds Driven by Tides, 10.1103/physrevlett.104.214501
  25. Nimmo F., Enceladus and the Icy Moons of Saturn, 475, 79 (2018)
  26. Ogilvie Gordon I., Tidal dissipation in rotating fluid bodies: a simplified model, 10.1111/j.1365-2966.2009.14814.x
  27. Ogilvie Gordon I., Tides in rotating barotropic fluid bodies: the contribution of inertial waves and the role of internal structure, 10.1093/mnras/sts362
  28. Ojakangas G.W., Stevenson D.J., Episodic volcanism of tidally heated satellites with application to Io, 10.1016/0019-1035(86)90163-6
  29. Poincaré H., Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation, 10.1007/bf02402204
  30. Porco C. C., Cassini Observes the Active South Pole of Enceladus, 10.1126/science.1123013
  31. Rekier J, Trinh A, Triana S A, Dehant V, Inertial modes in near-spherical geometries, 10.1093/gji/ggy465
  32. Rieutord M., Journal of Fluid Mechanics, 435, 42 (2000)
  33. RIEUTORD M., VALDETTARO L., Inertial waves in a rotating spherical shell, 10.1017/s0022112097005491
  34. Roberts James H., The fluffy core of Enceladus, 10.1016/j.icarus.2015.05.033
  35. Rovira-Navarro Marc, Rieutord Michel, Gerkema Theo, Maas Leo R.M., van der Wal Wouter, Vermeersen Bert, Do tidally-generated inertial waves heat the subsurface oceans of Europa and Enceladus?, 10.1016/j.icarus.2018.11.010
  36. Spencer J. R., Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot, 10.1126/science.1121661
  37. Thomas P.C., Tajeddine R., Tiscareno M.S., Burns J.A., Joseph J., Loredo T.J., Helfenstein P., Porco C., Enceladus’s measured physical libration requires a global subsurface ocean, 10.1016/j.icarus.2015.08.037
  38. Triana Santiago Andrés, Rekier Jérémy, Trinh Antony, Dehant Veronique, The coupling between inertial and rotational eigenmodes in planets with liquid cores, 10.1093/gji/ggz212
  39. Tyler R. H., Ocean tides heat Enceladus : OCEAN TIDES HEAT ENCELADUS, 10.1029/2009gl038300
  40. Tyler Robert, Comparative estimates of the heat generated by ocean tides on icy satellites in the outer Solar System, 10.1016/j.icarus.2014.08.037
  41. Hoolst Tim Van, Baland Rose-Marie, Trinh Antony, The diurnal libration and interior structure of Enceladus, 10.1016/j.icarus.2016.05.025
  42. Vance Steven D., Panning Mark P., Stähler Simon, Cammarano Fabio, Bills Bruce G., Tobie Gabriel, Kamata Shunichi, Kedar Sharon, Sotin Christophe, Pike William T., Lorenz Ralph, Huang Hsin-Hua, Jackson Jennifer M., Banerdt Bruce, Geophysical Investigations of Habitability in Ice-Covered Ocean Worlds : GEOPHYSICAL HABITABILITY, 10.1002/2017je005341
  43. Wilson Alec, Kerswell Rich R., Can libration maintain Enceladus's ocean?, 10.1016/j.epsl.2018.08.012
Bibliographic reference Rekier, J. ; Trinh, A. ; Triana, S. A. ; Dehant, Véronique. Internal Energy Dissipation in Enceladus's Subsurface Ocean From Tides and Libration and the Role of Inertial Waves. In: Journal of Geophysical Research: Planets, Vol. 124, no.8, p. 2198-2212 (2019)
Permanent URL