User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

The coupling between inertial and rotational eigenmodes in planets with liquid cores

  • Open access
  • PDF
  • 3.86 M
  1. Amestoy Patrick R., Duff Iain S., L'Excellent Jean-Yves, Koster Jacko, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, 10.1137/s0895479899358194
  2. Amestoy Patrick R., Guermouche Abdou, L’Excellent Jean-Yves, Pralet Stéphane, Hybrid scheduling for the parallel solution of linear systems, 10.1016/j.parco.2005.07.004
  3. Buffett Bruce A., Tidal dissipation and the strength of the Earth’s internal magnetic field, 10.1038/nature09643
  4. Dalcin Lisandro D., Paz Rodrigo R., Kler Pablo A., Cosimo Alejandro, Parallel distributed computing using Python, 10.1016/j.advwatres.2011.04.013
  5. Greenspan, The Theory of Rotating Fluids (1968)
  6. Hernandez Vicente, Roman Jose E., Vidal Vicente, SLEPc : A scalable and flexible toolkit for the solution of eigenvalue problems, 10.1145/1089014.1089019
  7. Hollerbach R., Kerswell R. R., Oscillatory internal shear layers in rotating and precessing flows, 10.1017/s0022112095003338
  8. Johansson H. T., Forssén C., Fast and Accurate Evaluation of Wigner 3$j$, 6$j$, and 9$j$ Symbols Using Prime Factorization and Multiword Integer Arithmetic, 10.1137/15m1021908
  9. Koot L., Dumberry M., Rivoldini A., De Viron O., Dehant V., Constraints on the coupling at the core-mantle and inner core boundaries inferred from nutation observations : Nutation constraints on CMB and ICB coupling, 10.1111/j.1365-246x.2010.04711.x
  10. Le Bars Michael, Cébron David, Le Gal Patrice, Flows Driven by Libration, Precession, and Tides, 10.1146/annurev-fluid-010814-014556
  11. Lin Yufeng, Ogilvie Gordon I., Tidal interactions in spin–orbit misaligned systems, 10.1093/mnras/stx540
  12. Mathews P. M., Herring T. A., Buffett B. A., Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth's interior : NEW NUTATION SERIES AND THE EARTH'S INTERIOR, 10.1029/2001jb000390
  13. Olver Sheehan, Townsend Alex, A Fast and Well-Conditioned Spectral Method, 10.1137/120865458
  14. Phinney Robert A., Burridge Robert, Representation of the Elastic - Gravitational Excitation of a Spherical Earth Model by Generalized Spherical Harmonics, 10.1111/j.1365-246x.1973.tb02407.x
  15. Rekier J, Trinh A, Triana S A, Dehant V, Inertial modes in near-spherical geometries, 10.1093/gji/ggy465
  16. RIEUTORD M., VALDETTARO L., Inertial waves in a rotating spherical shell, 10.1017/s0022112097005491
  17. Rieutord M., Valdettaro L., Axisymmetric inertial modes in a spherical shell at low Ekman numbers, 10.1017/jfm.2018.201
  18. RIEUTORD M., GEORGEOT B., VALDETTARO L., Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum, 10.1017/s0022112001003718
  19. Rogister Yves, Valette Bernard, Influence of liquid core dynamics on rotational modes, 10.1111/j.1365-246x.2008.03996.x
  20. Roman (2017)
  21. SCHMITT D., Numerical study of viscous modes in a rotating spheroid, 10.1017/s0022112006002497
  22. ZHANG KEKE, LIAO XINHAO, EARNSHAW PAUL, On inertial waves and oscillations in a rapidly rotating spheroid, 10.1017/s0022112003007456
Bibliographic reference Triana, Santiago Andrés ; Rekier, Jérémy ; Trinh, Antony ; Dehant, Véronique. The coupling between inertial and rotational eigenmodes in planets with liquid cores. In: Geophysical Journal International, Vol. 218, no.2, p. 1071-1086 (2019)
Permanent URL