Ash aggregation is a common phenomenon in particle-laden environments of volcanic eruption plumes and pyroclastic density currents.Manyoftheseinitiallyfragileaggregatesgainsufficientmechanicalstrengthtoremainintactafteratmospherictransport and deposition. Several processes contribute to ash aggregate stability, including electrostatic and hydrostatic bonding, ice formation,andcementationbysaltprecipitates.Here,wecompareleachatechemistryfromaggregatesfromavarietyoferuption and sedimentation conditions, ranging from dry magmatic eruptions with immediate deposition, to eruptions through seawater. The leachate data shows that the broad window of opportunity for aggregation and aggregate break-up may be used to qualitatively constrain suspended ash concentration and its temporal evolution. We show that aggregation rate and aggregate stability largelydependontheavailabilityofexternalwaterandsaltsource.Inparticular,highhumidityandextensivesaltprecipitationin seawater environments, such as during the Surtseyan eruptions, promote high aggregation rates and aggregate stability, with accordingly accentuated proximal deposition and aggregate concentration in the deposits. On the other hand, low humidity and salt concentrations during dry magmatic eruptions promote less aggregation and more efficient aggregate break-up, explaining the rarity of aggregates in the deposits. These results have strong implications for the ash budget in volcanic plumes and associated models of plume dispersal and related hazards.
Alois Stefano, Merrison Jonathan, Iversen Jens Jacob, Sesterhenn Jörn, Contact electrification in aerosolized monodispersed silica microspheres quantified using laser based velocimetry, 10.1016/j.jaerosci.2016.12.003
Armienta M.A., De la Cruz-Reyna S., Morton O., Cruz O., Ceniceros N., Chemical variations of tephra-fall deposit leachates for three eruptions from Popocatépetl volcano, 10.1016/s0377-0273(01)00251-7
Ayris Paul Martin, Delmelle Pierre, The immediate environmental effects of tephra emission, 10.1007/s00445-012-0654-5
Ayris P.M., Lee A.F., Wilson K., Kueppers U., Dingwell D.B., Delmelle P., SO2 sequestration in large volcanic eruptions: High-temperature scavenging by tephra, 10.1016/j.gca.2013.02.018
Ayris Paul M., Delmelle Pierre, Cimarelli Corrado, Maters Elena C., Suzuki Yujiro J., Dingwell Donald B., HCl uptake by volcanic ash in the high temperature eruption plume: Mechanistic insights, 10.1016/j.gca.2014.08.028
Bąbel M., Schreiber B.C., Geochemistry of Evaporites and Evolution of Seawater, Treatise on Geochemistry (2014) ISBN:9780080983004 p.483-560, 10.1016/b978-0-08-095975-7.00718-x
Bagheri Gholamhossein, Rossi Eduardo, Biass Sébastien, Bonadonna Costanza, Timing and nature of volcanic particle clusters based on field and numerical investigations, 10.1016/j.jvolgeores.2016.09.009
Bonadonna C., Genco R., Gouhier M., Pistolesi M., Cioni R., Alfano F., Hoskuldsson A., Ripepe M., Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations, 10.1029/2011jb008462
Brown R.J., Bonadonna C., Durant A.J., A review of volcanic ash aggregation, 10.1016/j.pce.2011.11.001
Burns F.A., Bonadonna C., Pioli L., Cole P.D., Stinton A., Ash aggregation during the 11 February 2010 partial dome collapse of the Soufrière Hills Volcano, Montserrat, 10.1016/j.jvolgeores.2017.01.024
Cole P. D., Guest J. E., Duncan A. M., Pacheco J. -M., Capelinhos 1957–1958, Faial, Azores: deposits formed by an emergent surtseyan eruption, 10.1007/s004450100136
Colombier M., Scheu B., Wadsworth F. B., Cronin S., Vasseur J., Dobson K. J., Hess K.-U., Tost M., Yilmaz T. I., Cimarelli C., Brenna M., Ruthensteiner B., Dingwell D. B., Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga-Hunga Ha'apai Volcano, Tonga, 10.1029/2017jb015357
Colombier M, Scheu B, Kueppers U, Cronin SJ, Mueller SB, Hess KU, Wadsworth FB, Tost M, Dobson KJ, Ruthensteiner B, Dingwell DB (2019) In situ granulation by thermal stress during subaqueous volcanic eruptions. Geology 47:179–182.
https://doi.org/10.1130/G45503.1/4607844/g45503
Costa A., Macedonio G., Folch A., A three-dimensional Eulerian model for transport and deposition of volcanic ashes, 10.1016/j.epsl.2005.11.019
Costa Antonio, Folch Arnau, Macedonio Giovanni, A model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulation, 10.1029/2009jb007175
Cronin Shane J, Neall V.E, Lecointre J.A, Hedley M.J, Loganathan P, Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand, 10.1016/s0377-0273(02)00465-1
Cronin Shane, Brenna Marco, Smith Ian, Barker Simon, Tost Manuela, Ford Murray, Tonga’onevai Sisi, Kula Taaniela, Vaiomounga Rennie, New Volcanic Island Unveils Explosive Past, 10.1029/2017eo076589
Damby DE, Peek S, Lerner AH, et al. (2018) Volcanic ash leachate chemistry from increased 2018 activity of Kīlauea Volcano, Hawaii: U.S. Geological Survey data release,
https://doi.org/10.5066/P98A07DC
Del Bello Elisabetta, Taddeucci Jacopo, Scarlato Piergiorgio, Giacalone Emanuele, Cesaroni Claudio, Experimental investigation of the aggregation-disaggregation of colliding volcanic ash particles in turbulent, low-humidity suspensions : Volcanic ash aggregation-disaggregation, 10.1002/2014gl062292
Delmelle Pierre, Villi�ras Fr�d�ric, Pelletier Manuel, Surface area, porosity and water adsorption properties of fine volcanic ash particles, 10.1007/s00445-004-0370-x
Delmelle Pierre, Lambert Mathieu, Dufrêne Yves, Gerin Patrick, Óskarsson Niels, Gas/aerosol–ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles, 10.1016/j.epsl.2007.04.052
Delmelle Pierre, Wadsworth Fabian B., Maters Elena C., Ayris Paul M., High Temperature Reactions Between Gases and Ash Particles in Volcanic Eruption Plumes, 10.2138/rmg.2018.84.8
Douillet Guilhem Amin, Tsang-Hin-Sun Ève, Kueppers Ulrich, Letort Jean, Pacheco Daniel Alejandro, Goldstein Fabian, Von Aulock Felix, Lavallée Yan, Hanson Jonathan Bruce, Bustillos Jorge, Robin Claude, Ramón Patricio, Hall Minard, Dingwell Donald B., Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador, 10.1007/s00445-013-0765-7
Draxler RR, Hess GD (1997) Description of the HYSPLIT4 modeling system. NOAA Tech Mem ERL ARL-224
Ennis Bryan J., Tardos Gabriel, Pfeffer Robert, A microlevel-based characterization of granulation phenomena, 10.1016/0032-5910(91)80189-p
Eychenne Julia, Le Pennec Jean-Luc, Troncoso Liliana, Gouhier Mathieu, Nedelec Jean-Marie, Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador), 10.1007/s00445-011-0517-5
Folch A., Costa A., Durant A., Macedonio G., A model for wet aggregation of ash particles in volcanic plumes and clouds: 2. Model application, 10.1029/2009jb007176
Garvin J. B., Slayback D. A., Ferrini V., Frawley J., Giguere C., Asrar G. R., Andersen K., Monitoring and Modeling the Rapid Evolution of Earth's Newest Volcanic Island:
Hunga Tonga Hunga Ha'apai
(Tonga) Using High Spatial Resolution Satellite Observations, 10.1002/2017gl076621
Gilbert J. S., Lane S. J., The origin of accretionary lapilli, 10.1007/bf00326465
Hoshyaripour G., Hort M., Langmann B., Ash iron mobilization in volcanic eruption plumes, 10.5194/acpd-14-32535-2014
Hovland M., Rueslåtten H.G., Johnsen H.K., Kvamme B., Kuznetsova T., Salt formation associated with sub-surface boiling and supercritical water, 10.1016/j.marpetgeo.2006.07.002
James M. R., Gilbert J. S., Lane S. J., Experimental investigation of volcanic particle aggregation in the absence of a liquid phase : DRY VOLCANIC PARTICLE AGGREGATION, 10.1029/2001jb000950
Kelfoun Karim, Samaniego Pablo, Palacios Pablo, Barba Diego, Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador), 10.1007/s00445-009-0286-6
Kokelaar Peter, Magma-water interactions in subaqueous and emergent basaltic, 10.1007/bf01081756
Kueppers U, Ayris P, Bernard B, et al. (2016) Volcano vs. environment: where, when and why does ash aggregate? Cities on Volcanoes 9, November 2016, Puerto Varas, Chile
Lathem T. L., Kumar P., Nenes A., Dufek J., Sokolik I. N., Trail M., Russell A., Hygroscopic properties of volcanic ash : HYGROSCOPOCITY OF VOLCANIC ASH, 10.1029/2011gl047298
Mastin L.G., Guffanti M., Servranckx R., Webley P., Barsotti S., Dean K., Durant A., Ewert J.W., Neri A., Rose W.I., Schneider D., Siebert L., Stunder B., Swanson G., Tupper A., Volentik A., Waythomas C.F., A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, 10.1016/j.jvolgeores.2009.01.008
Morgavi Daniele, Volcanic ash aggregation enhanced by seawater interaction: the case of Secche di Lazzaro phreatomagmatic deposit (Stromboli), 10.4401/ag-7874
Mueller Sebastian B., Kueppers Ulrich, Ayris Paul M., Jacob Michael, Dingwell Donald B., Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding, 10.1016/j.epsl.2015.11.007
Mueller Sebastian B., Ayris Paul M., Wadsworth Fabian B., Kueppers Ulrich, Casas Ana S., Delmelle Pierre, Taddeucci Jacopo, Jacob Michael, Dingwell Donald B., Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes, 10.1038/srep45762
Mueller Sebastian B., Kueppers Ulrich, Ametsbichler Jonathan, Cimarelli Corrado, Merrison Jonathan P., Poret Matthieu, Wadsworth Fabian B., Dingwell Donald B., Stability of volcanic ash aggregates and break-up processes, 10.1038/s41598-017-07927-w
Mueller Sebastian B., Kueppers Ulrich, Huber Matthew S., Hess Kai-Uwe, Poesges Gisela, Ruthensteiner Bernhard, Dingwell Donald B., Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing, 10.1007/s00445-018-1207-3
Murata K. J., Dondoli C., Saenz R., The 1963–65 eruption of Irazú volcano, Costa Rica (the period of March 1963 to October 1964), 10.1007/bf02597194
Neal C. A., Brantley S. R., Antolik L., Babb J. L., Burgess M., Calles K., Cappos M., Chang J. C., Conway S., Desmither L., Dotray P., Elias T., Fukunaga P., Fuke S., Johanson I. A., Kamibayashi K., Kauahikaua J., Lee R. L., Pekalib S., Miklius A., Million W., Moniz C. J., Nadeau P. A., Okubo P., Parcheta C., Patrick M. R., Shiro B., Swanson D. A., Tollett W., Trusdell F., Younger E. F., Zoeller M. H., Montgomery-Brown E. K., Anderson K. R., Poland M. P., Ball J. L., Bard J., Coombs M., Dietterich H. R., Kern C., Thelen W. A., Cervelli P. F., Orr T., Houghton B. F., Gansecki C., Hazlett R., Lundgren P., Diefenbach A. K., Lerner A. H., Waite G., Kelly P., Clor L., Werner C., Mulliken K., Fisher G., Damby D., The 2018 rift eruption and summit collapse of Kīlauea Volcano, 10.1126/science.aav7046
Óskarsson Niels, The interaction between volcanic gases and tephra: Fluorine adhering to tephra of the 1970 hekla eruption, 10.1016/0377-0273(80)90107-9
Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. US Geological Survey Water Resources Investigations Report 99–4259:312p
Salman AD, Hounslow MJ, Seville JPK (2006) Handbook of powder technology—granulation, eleventh Ed. Elsevier, Amsterdam, p 1402
Saxby Jennifer, Beckett Frances, Cashman Katharine, Rust Alison, Tennant Eleanor, The impact of particle shape on fall velocity: Implications for volcanic ash dispersion modelling, 10.1016/j.jvolgeores.2018.08.006
Scarlato Piergiorgio, Mollo Silvio, Del Bello Elisabetta, von Quadt Albrecht, Brown Richard J., Gutierrez Eduardo, Martinez-Hackert Bettina, Papale Paolo, The 2013 eruption of Chaparrastique volcano (El Salvador): Effects of magma storage, mixing, and decompression, 10.1016/j.chemgeo.2016.11.015
Schumacher Rolf, Schmincke Hans-Ulrich, Internal structure and occurrence of accretionary lapilli ? a case study at Laacher See Volcano, 10.1007/bf00493689
Steffke Andrea M., Fee David, Garces Milton, Harris Andrew, Eruption chronologies, plume heights and eruption styles at Tungurahua Volcano: Integrating remote sensing techniques and infrasound, 10.1016/j.jvolgeores.2010.03.004
Stinton Adam J., Cole Paul D., Stewart Roderick C., Odbert Henry M., Smith Patrick, Chapter 7 The 11 February 2010 partial dome collapse at Soufrière Hills Volcano, Montserrat, 10.1144/m39.7
Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley & Sons
Taddeucci J., Scarlato P., Montanaro C., Cimarelli C., Del Bello E., Freda C., Andronico D., Gudmundsson M.T., Dingwell D.B., Aggregation-dominated ash settling from the Eyjafjallajökull volcanic cloud illuminated by field and laboratory high-speed imaging, 10.1130/g32016.1
Van Eaton Alexa R., Muirhead James D., Wilson Colin J. N., Cimarelli Corrado, Growth of volcanic ash aggregates in the presence of liquid water and ice: an experimental approach, 10.1007/s00445-012-0634-9
Witham C.S., Oppenheimer C., Horwell C.J., Volcanic ash-leachates: a review and recommendations for sampling methods, 10.1016/j.jvolgeores.2004.11.010
Wright H. M. N., Cashman K. V., Mothes P. A., Hall M. L., Ruiz A. G., Le Pennec J.-L., Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua volcano, Ecuador, 10.1130/g32948.1
Bibliographic reference
Colombier, Mathieu ; Mueller, Sebastian B. ; Kueppers, Ulrich ; Scheu, Bettina ; Delmelle, Pierre ; et. al. Diversity of soluble salt concentrations on volcanic ash aggregates from a variety of eruption types and deposits. In: Bulletin of Volcanology, Vol. 81, no. 7, p. 39 (2019)