User menu

Regulation of insulin secretion: a matter of phase control and amplitude modulation.

Bibliographic reference Henquin, Jean-Claude. Regulation of insulin secretion: a matter of phase control and amplitude modulation.. In: Diabetologia, Vol. 52, no. 5, p. 739-51 (2009)
Permanent URL
  1. Grodsky GM, Batts AA, Bennett LL, Vcella C, McWilliams NB, Smith DF (1963) Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am J Physiol 205:638–644
  2. Coore HG, Randle PJ, Regulation of insulin secretion studied with pieces of rabbit pancreas incubatedin vitro, 10.1042/bj0930066
  3. Dean PM, Matthews EK (1968) Electrical activity in pancreatic islet cells. Nature 219:389–390
  4. Henquin JC, Meissner HP (1984) Significance of ionic fluxes and changes in membrane potential for stimulus–secretion coupling in pancreatic B cells. Experientia 40:1043–1052
  5. Malaisse WJ (1996) Metabolic signaling of insulin secretion. Diabetes Rev 4:145–159
  6. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54:87–143
  7. Seino S, Iwanaga T, Nagashima K, Miki T (2000) Diverse roles of KATP channels learned from Kir6.2 genetically engineered mice. Diabetes 49:311–318
  8. Henquin JC (2000) The triggering and amplifying pathways of the regulation of insulin secretion by glucose. Diabetes 49:1751–1760
  9. Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414:807–812
  10. Bryan J, Vila-Carriles WH, Zhao G, Babenko AP, Aguilar-Bryan L (2004) Toward linking structure with function in ATP-sensitive K+ channels. Diabetes 53(Suppl 3):S104–S112
  11. Tarasov A, Dusonchet J, Ashcroft F (2004) Metabolic regulation of the pancreatic beta cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3):S113–S122
  12. Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476
  13. Gembal M, Gilon P, Henquin JC (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 89:1288–1295
  14. Sato Y, Aizawa T, Komatsu M, Okada N, Yamada T (1992) Dual functional role of membrane depolarization/Ca2+ influx in rat pancreatic B cell. Diabetes 41:438–443
  15. Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P (2003) Hierarchy of the beta cell signals controlling insulin secretion. Eur J Clin Invest 33:742–750
  16. Detimary P, Van den Berghe G, Henquin JC (1996) Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J Biol Chem 271:20559–20565
  17. Lang J (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 259:3–17
  18. Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic β-cells. Diabetologia 46:1029–1045
  19. Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389:305–312
  20. Gauthier BR, Wollheim CB (2008) Synaptotagmins bind calcium to release insulin. Am J Physiol Endocrinol Metab 295:E1279–E1286
  21. Henquin JC (2004) Pathways in beta-cell stimulus–secretion coupling as targets for therapeutic insulin secretagogues. Diabetes 53(Suppl 3):S48–S58
  22. Gribble FM, Reimann F (2003) Sulphonylurea action revisited: the post-cloning era. Diabetologia 46:875–891
  23. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000) Sur1 knockout mice. A model for KATP channel-independent regulation of insulin secretion. J Biol Chem 275:9270–9277
  24. Nenquin M, Szollosi A, Aguilar-Bryan L, Bryan J, Henquin JC (2004) Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic β-cells. J Biol Chem 279:32316–32324
  25. Miki T, Nagashima K, Tashiro F et al (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci U S A 95:10402–10406
  26. Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC (2009) Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking ATP-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150:33–45
  27. Henquin JC (1988) ATP-sensitive K+ channels may control glucose-induced electrical activity in pancreatic B cells. Biochem Biophys Res Commun 156:769–775
  28. Panten U., Schwanstecher M., Wallasch A., Lenzen S., Glucose both inhibits and stimulates insulin secretion from isolated pancreatic islets exposed to maximally effective concentrations of sulfonylureas, 10.1007/bf00172128
  29. Gembal M, Detimary P, Gilon P, Gao ZY, Henquin JC (1993) Mechanisms by which glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 91:871–880
  30. Dufrane D, Nenquin M, Henquin JC (2007) Nutrient control of insulin secretion in perifused adult pig islets. Diabetes Metab 33:430–438
  31. Straub SG, James RFL, Dunne MJ, Sharp GWG (1998) Glucose activates both KATP channel-dependent and KATP channel-independent signaling pathways in human islets. Diabetes 47:758–763
  32. Henquin JC, Dufrane D, Nenquin M (2006) Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55:3470–3477
  33. Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49:424–430
  34. Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 18:451–463
  35. Szollosi A, Nenquin M, Aguilar-Bryan L, Bryan J, Henquin JC (2007) Glucose stimulates Ca2+ influx and insulin secretion in 2-week-old β-cells lacking ATP-sensitive K+ channels. J Biol Chem 282:1747–1756
  36. Komatsu M, Schermerhorn T, Aizawa T, Sharp GW (1995) Glucose stimulation of insulin release in the absence of extracellular Ca2+ and in the absence of any increase in intracellular Ca2+ in rat pancreatic islets. Proc Natl Acad Sci U S A 92:10728–10732
  37. Sato Y, Nenquin M, Henquin JC (1998) Relative contribution of Ca2+-dependent and Ca2+-independent mechanisms to the regulation of insulin secretion by glucose. FEBS Lett 421:115–119
  38. Ishiyama N, Ravier MA, Henquin JC (2006) Dual mechanism of the potentiation by glucose of insulin secretion induced by arginine and tolbutamide in mouse islets. Am J Physiol Endocrinol Metab 290:E540–E549
  39. Hermans MP, Schmeer W, Henquin JC (1987) The permissive effect of glucose, tolbutamide and high K+ on arginine stimulation of insulin release in isolated mouse islets. Diabetologia 30:659–665
  40. Pfeifer MA, Halter JB, Porte D Jr (1981) Insulin secretion in diabetes mellitus. Am J Med 70:579–588
  41. Henquin JC, Nenquin M, Stiernet P, Ahren B (2006) In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in β-cells. Diabetes 55:441–451
  42. Heart E, Corkey RF, Wikstrom JD, Shirihai OS, Corkey BE (2006) Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells. Am J Physiol Endocrinol Metab 290:E143–E148
  43. Bertrand G, Ishiyama N, Nenquin M, Ravier MA, Henquin JC (2002) The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem 277:32883–32891
  44. Stiernet P, Guiot Y, Gilon P, Henquin JC (2006) Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion. J Biol Chem 281:22142–22151
  45. Detimary P, Gilon P, Nenquin M, Henquin J C, Two sites of glucose control of insulin release with distinct dependence on the energy state in pancreatic B-cells, 10.1042/bj2970455
  46. Eliasson L, Renström E, Ding WG, Proks P, Rorsman P (1997) Rapid ATP-dependent priming of secretory granules precedes Ca2+-induced exocytosis in mouse pancreatic β-cells. J Physiol 503:399–412
  47. Takahashi N, Kadowaki T, Yazaki Y, Ellis-Davies GCR, Miyashita Y, Kasai H (1999) Post-priming actions of ATP on Ca2+-dependent exocytosis in pancreatic beta cells. Proc Natl Acad Sci U S A 96:760–765
  48. Jensen MV, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB (2008) Metabolic cycling in control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 295:E1287–E1297
  49. Dyachok O, Idevall-Hagren O, Sågetorp J et al (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37
  50. Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, in’t Veld P, Renström E, Schuit FC (2005) Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 54:2132–2142
  51. Panten U, Rustenbeck I (2008) Fuel-induced amplification of insulin secretion in mouse pancreatic islets exposed to a high sulfonylurea concentration: role of the NADPH/NADP+ ratio. Diabetologia 51:101–109
  52. Gunawardana SC, Liu YJ, MacDonald MJ, Straub SG, Sharp GW (2004) Anaplerotic input is sufficient to induce time-dependent potentiation of insulin release in rat pancreatic islets. Am J Physiol Endocrinol Metab 287:E828–E833
  53. Rutter GA, Leclerc I (2009) The AMP-regulated kinase family: enigmatic targets for diabetes therapy. Mol Cell Endocrinol 297:41–49
  54. Varadi A, Ainscow EK, Allan VJ, Rutter GA (2002) Involvement of conventional kinesin in glucose-stimulated secretory granule movements and exocytosis in clonal pancreatic beta-cells. J Cell Sci 115:4177–4189
  55. Bertuzzi A, Salinari S, Mingrone G (2007) Insulin granule trafficking in beta-cells: mathematical model of glucose-induced insulin secretion. Am J Physiol Endocrinol Metab 293:E396–E409
  56. Chen YD, Wang S, Sherman A (2008) Identifying the targets of the amplifying pathway for insulin secretion in pancreatic beta-cells by kinetic modeling of granule exocytosis. Biophys J 95:2226–2241
  57. Cerasi E, Luft R (1967) The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus. Acta Endocrinol 55:278–304
  58. Curry DL, Bennett LL, Grodsky GM (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83:572–584
  59. Henquin JC, Ishiyama N, Nenquin M, Ravier MA, Jonas JC (2002) Signals and pools underlying biphasic insulin secretion. Diabetes 51(Suppl 1):S60–S67
  60. Luzi L, DeFronzo RA (1989) Effect of loss of first-phase insulin secretion on hepatic glucose production and tissue glucose disposal in humans. Am J Physiol 257:E241–E246
  61. Nesher R, Cerasi E (2002) Modeling phasic insulin release. Immediate and time-dependent effects of glucose. Diabetes 51(Suppl. 1):S53–S59
  62. Nunemaker CS, Wasserman DH, McGuinness OP, Sweet IR, Teague JC, Satin LS (2006) Insulin secretion in the conscious mouse is biphasic and pulsatile. Am J Physiol Endocrinol Metab 290:E523–E529
  63. O’Connor MD, Landahl H, Grodsky GM (1980) Comparison of storage- and signal-limited models of pancreatic insulin secretion. Am J Physiol 238:R378–R389
  64. Jing Xingjun, Li Dai-Qing, Olofsson Charlotta S., Salehi Albert, Surve Vikas V., Caballero José, Ivarsson Rosita, Lundquist Ingmar, Pereverzev Alexey, Schneider Toni, Rorsman Patrik, Renström Erik, CaV2.3 calcium channels control second-phase insulin release, 10.1172/jci200522518
  65. Fridlyand Leonid E., Tamarina Natalia, Philipson Louis H., Modeling of Ca2+flux in pancreatic β-cells: role of the plasma membrane and intracellular stores, 10.1152/ajpendo.00194.2002
  66. Komatsu M, Sato Y, Aizawa T, Hashizume K (2001) KATP channel-independent glucose action: an elusive pathway in stimulus–secretion coupling of pancreatic beta-cell. Endocr J 48:275–288
  67. Shibasaki T, Takahashi H, Miki T et al (2007) Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A 104:19333–19338
  68. Kasai K, Fujita T, Gomi H, Izumi T (2008) Docking is not a prerequisite but a temporal constraint for fusion of secretory granules. Traffic 9:1191–203
  69. Barg S, Olofsson CS, Schriever-Abeln J et al (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299
  70. Ohara-Imaizumi M, Fujiwara T, Nakamichi Y et al (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177:695–705
  71. Lenzen S., The Immediate Insulin-secretory Response of the Rat Pancreas to Glucose Compared with Tolbutamide and Other Secretagogues, 10.2337/diab.27.1.27
  72. Gilon P, Ravier MA, Jonas JC, Henquin JC (2002) Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 51(Suppl 1):144–151
  73. Bertram R, Sherman A, Satin LS (2007) Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am J Physiol Endocrinol Metab 293:E890–E900
  74. Tengholm A, Gylfe E (2009) Oscillatory control of insulin secretion. Mol Cell Endocrinol 297:58–72
  75. Cunningham BA, Deeney JT, Bliss CR, Corkey BE, Tornheim K (1996) Glucose-induced oscillatory insulin secretion in perifused rat pancreatic islets and clonal beta-cells (HIT). Am J Physiol Endocrinol Metab 271:E702–E710
  76. Song SH, Kjems L, Ritzel R et al (2002) Pulsatile insulin secretion by human pancreatic islets. J Clin Endocrinol Metab 87:213–221
  77. Pørksen N (2002) The in vivo regulation of pulsatile insulin secretion. Diabetologia 45:3–20
  78. Zarkovic M, Henquin JC (2004) Synchronization and entrainment of cytoplasmic Ca2+ oscillations in cell clusters prepared from single or multiple mouse pancreatic islets. Am J Physiol Endocrinol Metab 287:E340–E347
  79. Meissner HP (1975) Electrophysiological evidence for coupling between beta cells of pancreatic islets. Nature 262:502–504
  80. Bavamian S, Klee P, Britan A et al (2007) Islet–cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes Metab 9(Suppl 2):118–132
  81. Ravier MA, Guldenagel M, Charollais A et al (2005) Loss of connexin 36 channels alters β-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54:1798–1807
  82. Santos RM, Rosario LM, Nadal A, Garcia-Sancho J, Soria B, Valdeolmillos M (1991) Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch 418:417–422
  83. Gilon P, Henquin JC (1995) Distinct effects of glucose on the synchronous oscillations of insulin release and cytoplasmic Ca2+ concentration measured simultaneously in single mouse islets. Endocrinology 136:5725–5730
  84. Nunemaker CS, Bertram R, Sherman A, Tsaneva-Atanasova K, Daniel CR, Satin LS (2006) Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys J 91:2082–2096
  85. Westerlund J, Ortsäter H, Palm F, Sundsten T, Bergsten P (2001) Glucose-regulated pulsatile insulin release from mouse islets via the KATP channel-independent pathway. Eur J Endocrinol 144:667–675
  86. Kjems LL, Ravier MA, Jonas JC, Henquin JC (2002) Do oscillations of insulin secretion occur in the absence of cytoplasmic Ca2+ oscillations in beta-cells. Diabetes 51(Suppl 1):S177–S182
  87. Jonas JC, Gilon P, Henquin JC (1998) Temporal and quantitative correlations between insulin secretion and stably elevated or oscillatory cytoplasmic Ca2+ in mouse pancreatic beta cells. Diabetes 47:1266–1273
  88. Ravier M, Gilon P, Henquin JC (1999) Oscillations of insulin secretion can be triggered by imposed oscillations of cytoplasmic Ca2+ or metabolism in normal mouse islets. Diabetes 48:2374–2382
  89. Longo EA, Tornheim K, Deeney JT et al (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem 266:9314–9319
  90. Krippeit-Drews P, Düfer M, Drews G (2000) Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B cells. Biochem Biophys Res Commun 267:179–813
  91. Kennedy RT, Kauri LM, Dahlgren GM, Jung SK (2002) Metabolic oscillations in beta cells. Diabetes 51(Suppl 1):S152–S161
  92. Luciani DS, Misler S, Polonsky KS (2006) Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J Physiol 572:379–392
  93. Ainscow EK, Rutter GA (2002) Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet beta-cells: evidence for a Ca2+-dependent mechanism. Diabetes 51(Suppl 1):S162–S170
  94. Tamarina NA, Kuznetsov A, Rhodes CJ, Bindokas VP, Philipson LH (2005) Inositol (1,4,5)-trisphosphate dynamics and intracellular calcium oscillations in pancreatic beta-cells. Diabetes 54:3073–3081
  95. Ravier MA, Henquin JC (2002) Time and amplitude regulation of pulsatile insulin secretion by triggering and amplifying pathways in mouse islets. FEBS Lett 530:215–219
  96. Bergsten P, Hellman B (1993) Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets. Diabetes 42:670–674
  97. Pipeleers DG (1992) Heterogeneity in pancreatic β cell population. Diabetes 41:777–781
  98. Bennett BD, Jetton TL, Ying G, Magnuson MA, Piston DW (1996) Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem 271:3647–3651
  99. Jonkers FC, Henquin JC (2001) Measurements of cytoplasmic Ca2+ in islet cell clusters show that glucose rapidly recruits β-cells and gradually increases the individual cell response. Diabetes 50:540–550
  100. Jonkers FC, Guiot Y, Rahier J, Henquin JC (2001) Tolbutamide stimulation of pancreatic β-cells involves both cell recruitment and increase in the individual Ca2+ response. Br J Pharmacol 133:575–585