User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Regulation of insulin secretion: a matter of phase control and amplitude modulation

  1. Grodsky GM, Batts AA, Bennett LL, Vcella C, McWilliams NB, Smith DF (1963) Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am J Physiol 205:638–644
  2. Coore HG, Randle PJ, Regulation of insulin secretion studied with pieces of rabbit pancreas incubatedin vitro, 10.1042/bj0930066
  3. Dean PM, Matthews EK (1968) Electrical activity in pancreatic islet cells. Nature 219:389–390
  4. Henquin JC, Meissner HP (1984) Significance of ionic fluxes and changes in membrane potential for stimulus–secretion coupling in pancreatic B cells. Experientia 40:1043–1052
  5. Malaisse WJ (1996) Metabolic signaling of insulin secretion. Diabetes Rev 4:145–159
  6. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54:87–143
  7. Seino S, Iwanaga T, Nagashima K, Miki T (2000) Diverse roles of KATP channels learned from Kir6.2 genetically engineered mice. Diabetes 49:311–318
  8. Henquin JC (2000) The triggering and amplifying pathways of the regulation of insulin secretion by glucose. Diabetes 49:1751–1760
  9. Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414:807–812
  10. Bryan J, Vila-Carriles WH, Zhao G, Babenko AP, Aguilar-Bryan L (2004) Toward linking structure with function in ATP-sensitive K+ channels. Diabetes 53(Suppl 3):S104–S112
  11. Tarasov A, Dusonchet J, Ashcroft F (2004) Metabolic regulation of the pancreatic beta cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3):S113–S122
  12. Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476
  13. Gembal M, Gilon P, Henquin JC (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 89:1288–1295
  14. Sato Y, Aizawa T, Komatsu M, Okada N, Yamada T (1992) Dual functional role of membrane depolarization/Ca2+ influx in rat pancreatic B cell. Diabetes 41:438–443
  15. Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P (2003) Hierarchy of the beta cell signals controlling insulin secretion. Eur J Clin Invest 33:742–750
  16. Detimary P, Van den Berghe G, Henquin JC (1996) Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J Biol Chem 271:20559–20565
  17. Lang J (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 259:3–17
  18. Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic β-cells. Diabetologia 46:1029–1045
  19. Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389:305–312
  20. Gauthier BR, Wollheim CB (2008) Synaptotagmins bind calcium to release insulin. Am J Physiol Endocrinol Metab 295:E1279–E1286
  21. Henquin JC (2004) Pathways in beta-cell stimulus–secretion coupling as targets for therapeutic insulin secretagogues. Diabetes 53(Suppl 3):S48–S58
  22. Gribble FM, Reimann F (2003) Sulphonylurea action revisited: the post-cloning era. Diabetologia 46:875–891
  23. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000) Sur1 knockout mice. A model for KATP channel-independent regulation of insulin secretion. J Biol Chem 275:9270–9277
  24. Nenquin M, Szollosi A, Aguilar-Bryan L, Bryan J, Henquin JC (2004) Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic β-cells. J Biol Chem 279:32316–32324
  25. Miki T, Nagashima K, Tashiro F et al (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci U S A 95:10402–10406
  26. Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC (2009) Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking ATP-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150:33–45
  27. Henquin JC (1988) ATP-sensitive K+ channels may control glucose-induced electrical activity in pancreatic B cells. Biochem Biophys Res Commun 156:769–775
  28. Panten U., Schwanstecher M., Wallasch A., Lenzen S., Glucose both inhibits and stimulates insulin secretion from isolated pancreatic islets exposed to maximally effective concentrations of sulfonylureas, 10.1007/bf00172128
  29. Gembal M, Detimary P, Gilon P, Gao ZY, Henquin JC (1993) Mechanisms by which glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 91:871–880
  30. Dufrane D, Nenquin M, Henquin JC (2007) Nutrient control of insulin secretion in perifused adult pig islets. Diabetes Metab 33:430–438
  31. Straub SG, James RFL, Dunne MJ, Sharp GWG (1998) Glucose activates both KATP channel-dependent and KATP channel-independent signaling pathways in human islets. Diabetes 47:758–763
  32. Henquin JC, Dufrane D, Nenquin M (2006) Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55:3470–3477
  33. Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49:424–430
  34. Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 18:451–463
  35. Szollosi A, Nenquin M, Aguilar-Bryan L, Bryan J, Henquin JC (2007) Glucose stimulates Ca2+ influx and insulin secretion in 2-week-old β-cells lacking ATP-sensitive K+ channels. J Biol Chem 282:1747–1756
  36. Komatsu M, Schermerhorn T, Aizawa T, Sharp GW (1995) Glucose stimulation of insulin release in the absence of extracellular Ca2+ and in the absence of any increase in intracellular Ca2+ in rat pancreatic islets. Proc Natl Acad Sci U S A 92:10728–10732
  37. Sato Y, Nenquin M, Henquin JC (1998) Relative contribution of Ca2+-dependent and Ca2+-independent mechanisms to the regulation of insulin secretion by glucose. FEBS Lett 421:115–119
  38. Ishiyama N, Ravier MA, Henquin JC (2006) Dual mechanism of the potentiation by glucose of insulin secretion induced by arginine and tolbutamide in mouse islets. Am J Physiol Endocrinol Metab 290:E540–E549
  39. Hermans MP, Schmeer W, Henquin JC (1987) The permissive effect of glucose, tolbutamide and high K+ on arginine stimulation of insulin release in isolated mouse islets. Diabetologia 30:659–665
  40. Pfeifer MA, Halter JB, Porte D Jr (1981) Insulin secretion in diabetes mellitus. Am J Med 70:579–588
  41. Henquin JC, Nenquin M, Stiernet P, Ahren B (2006) In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in β-cells. Diabetes 55:441–451
  42. Heart E, Corkey RF, Wikstrom JD, Shirihai OS, Corkey BE (2006) Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells. Am J Physiol Endocrinol Metab 290:E143–E148
  43. Bertrand G, Ishiyama N, Nenquin M, Ravier MA, Henquin JC (2002) The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem 277:32883–32891
  44. Stiernet P, Guiot Y, Gilon P, Henquin JC (2006) Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion. J Biol Chem 281:22142–22151
  45. Detimary P, Gilon P, Nenquin M, Henquin J C, Two sites of glucose control of insulin release with distinct dependence on the energy state in pancreatic B-cells, 10.1042/bj2970455
  46. Eliasson L, Renström E, Ding WG, Proks P, Rorsman P (1997) Rapid ATP-dependent priming of secretory granules precedes Ca2+-induced exocytosis in mouse pancreatic β-cells. J Physiol 503:399–412
  47. Takahashi N, Kadowaki T, Yazaki Y, Ellis-Davies GCR, Miyashita Y, Kasai H (1999) Post-priming actions of ATP on Ca2+-dependent exocytosis in pancreatic beta cells. Proc Natl Acad Sci U S A 96:760–765
  48. Jensen MV, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB (2008) Metabolic cycling in control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 295:E1287–E1297
  49. Dyachok O, Idevall-Hagren O, Sågetorp J et al (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37
  50. Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, in’t Veld P, Renström E, Schuit FC (2005) Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 54:2132–2142
  51. Panten U, Rustenbeck I (2008) Fuel-induced amplification of insulin secretion in mouse pancreatic islets exposed to a high sulfonylurea concentration: role of the NADPH/NADP+ ratio. Diabetologia 51:101–109
  52. Gunawardana SC, Liu YJ, MacDonald MJ, Straub SG, Sharp GW (2004) Anaplerotic input is sufficient to induce time-dependent potentiation of insulin release in rat pancreatic islets. Am J Physiol Endocrinol Metab 287:E828–E833
  53. Rutter GA, Leclerc I (2009) The AMP-regulated kinase family: enigmatic targets for diabetes therapy. Mol Cell Endocrinol 297:41–49
  54. Varadi A, Ainscow EK, Allan VJ, Rutter GA (2002) Involvement of conventional kinesin in glucose-stimulated secretory granule movements and exocytosis in clonal pancreatic beta-cells. J Cell Sci 115:4177–4189
  55. Bertuzzi A, Salinari S, Mingrone G (2007) Insulin granule trafficking in beta-cells: mathematical model of glucose-induced insulin secretion. Am J Physiol Endocrinol Metab 293:E396–E409
  56. Chen YD, Wang S, Sherman A (2008) Identifying the targets of the amplifying pathway for insulin secretion in pancreatic beta-cells by kinetic modeling of granule exocytosis. Biophys J 95:2226–2241
  57. Cerasi E, Luft R (1967) The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus. Acta Endocrinol 55:278–304
  58. Curry DL, Bennett LL, Grodsky GM (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83:572–584
  59. Henquin JC, Ishiyama N, Nenquin M, Ravier MA, Jonas JC (2002) Signals and pools underlying biphasic insulin secretion. Diabetes 51(Suppl 1):S60–S67
  60. Luzi L, DeFronzo RA (1989) Effect of loss of first-phase insulin secretion on hepatic glucose production and tissue glucose disposal in humans. Am J Physiol 257:E241–E246
  61. Nesher R, Cerasi E (2002) Modeling phasic insulin release. Immediate and time-dependent effects of glucose. Diabetes 51(Suppl. 1):S53–S59
  62. Nunemaker CS, Wasserman DH, McGuinness OP, Sweet IR, Teague JC, Satin LS (2006) Insulin secretion in the conscious mouse is biphasic and pulsatile. Am J Physiol Endocrinol Metab 290:E523–E529
  63. O’Connor MD, Landahl H, Grodsky GM (1980) Comparison of storage- and signal-limited models of pancreatic insulin secretion. Am J Physiol 238:R378–R389
  64. Jing Xingjun, Li Dai-Qing, Olofsson Charlotta S., Salehi Albert, Surve Vikas V., Caballero José, Ivarsson Rosita, Lundquist Ingmar, Pereverzev Alexey, Schneider Toni, Rorsman Patrik, Renström Erik, CaV2.3 calcium channels control second-phase insulin release, 10.1172/jci200522518
  65. Fridlyand Leonid E., Tamarina Natalia, Philipson Louis H., Modeling of Ca2+flux in pancreatic β-cells: role of the plasma membrane and intracellular stores, 10.1152/ajpendo.00194.2002
  66. Komatsu M, Sato Y, Aizawa T, Hashizume K (2001) KATP channel-independent glucose action: an elusive pathway in stimulus–secretion coupling of pancreatic beta-cell. Endocr J 48:275–288
  67. Shibasaki T, Takahashi H, Miki T et al (2007) Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A 104:19333–19338
  68. Kasai K, Fujita T, Gomi H, Izumi T (2008) Docking is not a prerequisite but a temporal constraint for fusion of secretory granules. Traffic 9:1191–203
  69. Barg S, Olofsson CS, Schriever-Abeln J et al (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299
  70. Ohara-Imaizumi M, Fujiwara T, Nakamichi Y et al (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177:695–705
  71. Lenzen S., The Immediate Insulin-secretory Response of the Rat Pancreas to Glucose Compared with Tolbutamide and Other Secretagogues, 10.2337/diab.27.1.27
  72. Gilon P, Ravier MA, Jonas JC, Henquin JC (2002) Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 51(Suppl 1):144–151
  73. Bertram R, Sherman A, Satin LS (2007) Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am J Physiol Endocrinol Metab 293:E890–E900
  74. Tengholm A, Gylfe E (2009) Oscillatory control of insulin secretion. Mol Cell Endocrinol 297:58–72
  75. Cunningham BA, Deeney JT, Bliss CR, Corkey BE, Tornheim K (1996) Glucose-induced oscillatory insulin secretion in perifused rat pancreatic islets and clonal beta-cells (HIT). Am J Physiol Endocrinol Metab 271:E702–E710
  76. Song SH, Kjems L, Ritzel R et al (2002) Pulsatile insulin secretion by human pancreatic islets. J Clin Endocrinol Metab 87:213–221
  77. Pørksen N (2002) The in vivo regulation of pulsatile insulin secretion. Diabetologia 45:3–20
  78. Zarkovic M, Henquin JC (2004) Synchronization and entrainment of cytoplasmic Ca2+ oscillations in cell clusters prepared from single or multiple mouse pancreatic islets. Am J Physiol Endocrinol Metab 287:E340–E347
  79. Meissner HP (1975) Electrophysiological evidence for coupling between beta cells of pancreatic islets. Nature 262:502–504
  80. Bavamian S, Klee P, Britan A et al (2007) Islet–cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes Metab 9(Suppl 2):118–132
  81. Ravier MA, Guldenagel M, Charollais A et al (2005) Loss of connexin 36 channels alters β-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54:1798–1807
  82. Santos RM, Rosario LM, Nadal A, Garcia-Sancho J, Soria B, Valdeolmillos M (1991) Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch 418:417–422
  83. Gilon P, Henquin JC (1995) Distinct effects of glucose on the synchronous oscillations of insulin release and cytoplasmic Ca2+ concentration measured simultaneously in single mouse islets. Endocrinology 136:5725–5730
  84. Nunemaker CS, Bertram R, Sherman A, Tsaneva-Atanasova K, Daniel CR, Satin LS (2006) Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys J 91:2082–2096
  85. Westerlund J, Ortsäter H, Palm F, Sundsten T, Bergsten P (2001) Glucose-regulated pulsatile insulin release from mouse islets via the KATP channel-independent pathway. Eur J Endocrinol 144:667–675
  86. Kjems LL, Ravier MA, Jonas JC, Henquin JC (2002) Do oscillations of insulin secretion occur in the absence of cytoplasmic Ca2+ oscillations in beta-cells. Diabetes 51(Suppl 1):S177–S182
  87. Jonas JC, Gilon P, Henquin JC (1998) Temporal and quantitative correlations between insulin secretion and stably elevated or oscillatory cytoplasmic Ca2+ in mouse pancreatic beta cells. Diabetes 47:1266–1273
  88. Ravier M, Gilon P, Henquin JC (1999) Oscillations of insulin secretion can be triggered by imposed oscillations of cytoplasmic Ca2+ or metabolism in normal mouse islets. Diabetes 48:2374–2382
  89. Longo EA, Tornheim K, Deeney JT et al (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem 266:9314–9319
  90. Krippeit-Drews P, Düfer M, Drews G (2000) Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B cells. Biochem Biophys Res Commun 267:179–813
  91. Kennedy RT, Kauri LM, Dahlgren GM, Jung SK (2002) Metabolic oscillations in beta cells. Diabetes 51(Suppl 1):S152–S161
  92. Luciani DS, Misler S, Polonsky KS (2006) Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J Physiol 572:379–392
  93. Ainscow EK, Rutter GA (2002) Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet beta-cells: evidence for a Ca2+-dependent mechanism. Diabetes 51(Suppl 1):S162–S170
  94. Tamarina NA, Kuznetsov A, Rhodes CJ, Bindokas VP, Philipson LH (2005) Inositol (1,4,5)-trisphosphate dynamics and intracellular calcium oscillations in pancreatic beta-cells. Diabetes 54:3073–3081
  95. Ravier MA, Henquin JC (2002) Time and amplitude regulation of pulsatile insulin secretion by triggering and amplifying pathways in mouse islets. FEBS Lett 530:215–219
  96. Bergsten P, Hellman B (1993) Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets. Diabetes 42:670–674
  97. Pipeleers DG (1992) Heterogeneity in pancreatic β cell population. Diabetes 41:777–781
  98. Bennett BD, Jetton TL, Ying G, Magnuson MA, Piston DW (1996) Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem 271:3647–3651
  99. Jonkers FC, Henquin JC (2001) Measurements of cytoplasmic Ca2+ in islet cell clusters show that glucose rapidly recruits β-cells and gradually increases the individual cell response. Diabetes 50:540–550
  100. Jonkers FC, Guiot Y, Rahier J, Henquin JC (2001) Tolbutamide stimulation of pancreatic β-cells involves both cell recruitment and increase in the individual Ca2+ response. Br J Pharmacol 133:575–585
Bibliographic reference Henquin, Jean-Claude. Regulation of insulin secretion: a matter of phase control and amplitude modulation. In: Diabetologia : clinical and experimental diabetes and metabolism, Vol. 52, no. 5, p. 739-751 (2009)
Permanent URL http://hdl.handle.net/2078.1/21892