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Graphical Adaptive Menus are Graphical User Interfaces menus whose items predicted of immediate usage

can be automatically rendered in a prediction window. Rendering this prediction window is a key question

for adaptivity to enable the end user to efficiently differentiate predicted items from normal ones and to

select appropriate items consequently. Adaptivity for graphical menus has been more investigated for normal

screens, such as desktops, than for small screens, such as smartphones, where real estate imposes severe

rendering constraints. To address this question, this paper defines and explores a design space where graphical

adaptive menus are structured based on Bertin’s eight visual variables (i.e., position, size, shape, value, color,

orientation, texture, and motion) and their combination by comparing their rendering for small screens with

respect to normal screens. Based on this design space, previously introduced graphical adaptive menus are

revisited in terms of four stability properties (i.e., spatial, physical, format, and temporal), new menu designs

are introduced and discussed for both normal and small screens. The resulting set of graphical adaptive menu

has been subject to a preference analysis from which a particular design emerged: the cloud menu, where

predicted items are arranged in an adaptive tag cloud. We investigate empirically the effect of the cloud menu

on the item selection time and the error rate, with respect to a static menu and an adaptive linear menu. The

paper then suggests a set of usability guidelines useful for designers and practitioners to design graphical

adaptive menus in general and cloud menus in particular.
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1 INTRODUCTION
Graphical User Interfaces (GUIs) of interactive applications can be subject to three primary forms

of adaptation [32]: adaptability when the end user controls its adaptation process, adaptivity
when the application controls the adaptation, or mixed-initiative when the adaptation process is

collaboratively managed by both the end user and the application [44]. Between the two extremes

exists a large spectrum for various forms of mixed-initiative adaptations [58] depending on the

degree of intervention or control of the end user vs. the application. It then follows an adaptation life

cycle with two regulation loops between the user and the application [19]: a perception-decision-

action (PDA) loop for both the application and the end user and a learning-prediction-adaptation

(LPA) for supporting the adaptation, this last being particularly expressive for adaptivity.

Adaptability gives the full potential and control to the end user, which is often appreciated for its

flexibility, but depreciated for being time consuming, which is perceived as even more constraining

when repeated. The end user tends to enter into adaptability only if the win exceeds the cost. This is

the main reason why adaptivity has been introduced: to delegate the execution of adaptation to the

application as a function that was previously ensured by the end user. Adaptivity exhibits a series of

potential benefits, such as the ability to improve the three usual usability aspects: effectiveness [81],

efficiency [39], and subjective satisfaction [32, 69]. By automatically changing the presentation

and/or the behavior of the GUI depending on each individual end user, it is expected that these

benefits will become ultimately profitable for the end user. In practice, however, many obstacles

exist before adaptivity provides its full benefits. Moreover, adaptivity also brings its own limitations

such as its perpetual change over time which prevents the end user from learning it and increases

her cognitive load [52], the loss of control [41, 52], the rejection of adaptation [5], the high variation

of its impact on usability [52, 66, 76], especially depending on end user’s characteristics [38] and task

[39], the need for accuracy [40], the limited performance [28], the need for ensuring predictability

[23, 40, 73], the need for explaining and understanding why a particular adaptation technique has

been applied [73, 76], the wish for providing the GUI with feedback on the adaptivity quality [4],

and the need for appropriate measures for evaluating the impact of adaptivity [39].

Due to these variations and the large variety of GUI elements subject to adaptivity, we orient the

discussion of this paper to graphical menus, which still represent today one of the most frequently

used techniques for interacting with any web site or interactive application [6]. A significant

body of research and development has been devoted to optimizing their usage [7], in particular by

adapting them to any aspect of the context of use [26]: to the end user [23, 38], to the interactive

task [39, 50], to the device/platform [16, 24, 32, 45, 69], and to the environment [17, 67] and its

location [81]. Moreover, menu selection is an interaction style subject to many design issues [53]

that are at the heart of menu engineering, such as automated generation [77] and evaluation of

graphical menus [15].

Graphical Adaptive Menus typically present the end user with predicted items in order to speed

up their selection without searching for them in deep and wide menus, particularly for feature-rich

software where the amount of items becomes important [82]. With the continuous expansion

of mobile applications running on an ever-increasing variety of mobile devices, new adaptivity

techniques are required [4, 23, 34, 39] that consider constraints imposed by these devices such

as a moderate computational power, a limited set of interaction techniques and a reduced screen

resolution [33]. This last constraint significantly affects the navigation through several screens or

pages, lists like phone setting or address books, and menus, especially when lengthy [69]. Since

selection of a target requires a navigation time and a visual search time that are depending on the

number of items that can be displayed in the GUI, mobile devices are particularly affected.
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We hereby define the prediction window as the subset of menu items resulting from a prediction

scheme. Although the name ”prediction window” suggests a graphical rendering, it does not

preclude any particular modality usage. This paper will cover the graphical modality for addressing

the following research question: what kind of graphical technique would be suitable to render a

prediction window on small screens vs. normal screens?

This paper will not cover other modalities which could be alternatively used for this rendering,

such as vocal, touch, gesture, or haptics. Such modalities, either taken individually or collectively,

have been investigated for rendering the static menu, but not the prediction window. For instance,

an auditory adaptive menu [83], a menu adaptation pattern [12] emphasizes items in a menu

by adding graphical markings or selecting more noticeable colors in the graphical modality or

by increasing their volume, adding acoustical markings when they are read in speech modality.

The area of Multimodal Adaptive Menu is still in its infancy, with preliminary works such as the

Adaptive Multimodal Framework for adapting multimodal applications [13] which comprises a

detailed discussion of all adaptation steps or Polymodal Menus [18].

Even the graphical modality has not been fully investigated yet. This paper will focus on Graphical

Adaptive Menus in two dimensions, mainly on their visual space. Other spaces, like the motor

space and the cognitive spaces are discussed elsewhere [6], as well as three dimensional menus

on small screens [49]. This paper also assumes that the prediction scheme, i.e., the method used to

predict relevant menu items, is selected among the various existing ones: [23, 28, 54, 72, 81]:

• Most Frequently Used (MFU): the most frequently used menu items over a certain period of

time ranging from a certain date until today.

• Most Recently Used (MRU): the most recently used items over a small recent period of time,

like the last day, week, or month.

• Least Recently Used (LRU): the least frequently used menu items over a certain period of time

[37].

• Degree-of-Interest (DOI): all the items for which a computed DOI returns a value above a

certain threshold. For instance, the DOI can be based on navigation history, repetition, and

context-aware interaction.

• Topic-of-Interest (TOI): all the items which have been defined as a marker of interest from the

end user. For instance, international news, technology, productivity software.

• Adaptive filtering: all the items whose a cost function returns a value above a certain threshold.

This cost function typically consists of a linear filter with a transfer function controlled by

variable parameters to be adjusted depending on the context of use.

• Context-aware adaptation: the items are predicted according to end users’ actions depending

on the context of use [62]. Different parameters can be examined, such as space, time, task,

history, role, user preferences, social aspects, through various techniques borrowed from

artificial intelligence and machine learning [13, 23].

The remainder of this paper is structured as follows: Section 2 will examine work related to

graphical adaptive interfaces and menus with a particular filter for menus which can serve the

prediction window rendering. Section 3 will define the design space used throughout the paper

to structure the discussion of graphical adaptive menus. Section 4 will report on the results of

a preference analysis concerning previously identified graphical adaptive menus. Section 5 will

present two user studies related to the cloud menu, which emerged from the preference analysis.

Section 6 will devise some usability guidelines for graphical adaptive menus and for the cloud

menus. Section 7 will revisit the research question in the light of the contribution and will present

some avenues to this research by structuring them by level.
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Fig. 1. Catalogue of menus: part 1/3 discussed in the Related Work.

2 RELATEDWORK
Graphical adaptive interfaces exhibit a certain amount of potential benefits [41] at a certain cost

[52, 76]. The cost/benefit ratio becomes positive when the adaptivity reduces the menu selection

time, such as in a hierarchical menu [66] or when limited screen resolution induces long scrolling

[53]. By predicting the three best items based on user’s contextual information, e.g., activities,

location, time, emotion, and weather, an accuracy of up to 69% can be obtained [54].

Other observed shortcomings are: adaptivity does not work well with short menus, when the

end user alternates between items whose amount is larger than those contained in the prediction

window, when spatial instability is provoked by altering the initial menu [39]. Various graphical

adaptive menus exist that partially satisfy this property. This section reviews work related to menu

selection in chronological order, with a particular attention to graphical adaptive menus. Fig. ??
presents an overview of most of the menus discussed in this section.

We hereby define a static menu as the initial non-adaptive version of the graphical menu,

consisting of a hierarchy of menu items arranged in a linear way with their related properties, such

as position, structure, and ordering which remain constant over time. Hence, a static menu always

preserves spatial stability since all items are consistently positioned in the menu over time.

Probability-based menus [74] sort items in decreasing probability of selection: most popular

items are positioned near the beginning of themenu. During the initial stages of practice, probability-

based menus produce faster mean selection times than the static menu, the random menu (where

items are randomly arranged), and the alphabetic menu (where items are sorted in increasing

alphabetical order). After some practice, the static menu becomes better than the probability-based
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menu. End users remember easily the item position in the menu, indicating that spatial stability is

an important factor in increasing the efficiency of menu selection.

Frequency-based menus, also called Dynamic Menus [63], sort items in decreasing order of

frequency, depending on the end user’s actions, thus promoting MFU. They are probably the first

manifestation of adaptive menu in history during the 1980’s with the probability-based menus [6].

Adaptive Prompting [50] predicts a selection of applications and related files based on an

application model (which specifies relationships between elements) and a user model (which

manually specifies the user’s experience level, etc.) to reduce navigation effort. How applications

and files are presented is also subject to adaptivity.

Split menus [72] assemble a prediction window (here, a topmost area promoting a small list

of predicted items, typically 2-3) and a static menu. Menu items are initially predicted according

MFU scheme and later on expanded to other schemes such as MRU, DOI, or any combination of

them. Any menu item appears in either the static part or in the predicted window, which may

confuse users who constantly oscillate between the two areas to find their item. The split menu

was implemented for three conditions [32]: static (top four items remain static), adaptable (top

four items can be moved up and down by end users), and adaptive (top four items are predicted

according to user’s recently and frequently used items). Static menus were found more efficient

than both adaptable and adaptive menus, but adaptable menus were favored in terms of satisfaction.

Split menus with replication [39] restore spatial stability: the prediction window remains

as stated before but the second part remains unaltered, thus enabling end users to always refer

to the static menu as they know it. When this second part contains a more important amount of

items, it could become reduced and scrollable either via a scroll bar (split menu with scroll bar) or

with an arrow bar (split menu with arrow bar) [10]. Stable user traits, such as users with low-level

extraversion and high-level needs for cognition, favor the adoption of split user interfaces [38].

Smart menus [46], featured in Microsoft Office 2003, initially show only the most commonly

used items and all the available items by clicking on the arrow at the bottom of the smart menu

to expand it. Smart menus track how often an end user invokes each item, in order to predict

frequently used and recently used menu items. Smart menus provide beginners with a starting

guided path toward learning a new UI. Menus become adaptive when they reflect the users’ work

habits. In short, a MFU or a MRU scheme automatically hides unused items. This method could be

generalized to any prediction scheme: the prediction window is first displayed with unpredicted

items hidden, the complete menu is displayed by clicking on the arrow. The lack of observability

and understandability of the prediction as well as the dislike of the extra click and delay imposed

lead most end users to deactivate this option [46].

Gapped menus [35] attempt to restore spatial stability to smart menus. Gapped menus present

the static menu with only predicted items, leaving a blank space as a gap for unpredicted items.

Clicking on the arrow at the bottom of the gapped menu displays the entire static menu. An

experiment compared a static menu, a smart menu, and a gapped menu: item selection times and

error rates were smaller for the static menu than for the smart menu. The gapped menu, whilst

being as long as the static menu, was faster than the smart menu, but slower than the static menu.

Bolding menus [66] are a first form of emphasized menus where predicted items are boldfaced.

A split menu, a bolding menu, an adaptable menu, and a traditional menu were compared for

a normal screen [66]: the adaptable menu outperformed the other menus in terms of overall

performance and subjective satisfaction. The split menu was estimated sub-optimal, especially

when the predicted frequency changes. The bolding menu was not significantly better than the

traditional menu in terms of item selection time, but was preferred by end users since estimated

much less sensitive to the variations of prediction that its counterparts.
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Fig. 2. Catalogue of menus: part 2/3 discussed in the Related Work.

Highlighting menus [66] emphasize predicted items by contrasting them with respect to

normal items appearing in the static menu. For instance, Gajos et al. [39] highlight predicted items

by colouring their background in pink. A study analyzed the effect of menu size on user satisfaction

of five menus with different highlighting [2]: an adaptable menu where participants could move

up and down predicted item; an adaptive double split menu divided into a section applying a

MFU scheme, a section apply a MRU scheme, and the unpredicted items; an adaptive/adaptable

bolding menu where participants could move predicted items up and down after 50 selections;

an adaptive/adaptable minimized menu, which is a smart menu divided into a MFU section, a

MRU section, and the rest of items to be displayed on demand with a moving facility; and a mixed-

initiative menu [44], which is a bolding menu letting the participant to choose between MFU

and MRU. In small menus, the minimized condition was the most preferred menus, followed by

the adaptable, and bolding menus. The adaptive split and mixed-initiative menus were the least

preferred menus. In large menus, the mixed-initiative was the most preferred, followed by the

minimized menu; the adaptable menu was the least preferred followed by the adaptive split menu.

Square Menus [1] are re-layouting items of the pull-down menus into square regions in order

to improve their selection performance. They performed a large analysis of several research studies

to propose the Search, Decision, and Pointing (SDP) model. Square Menus improve specifically

pointing performance, especially for experts. It was shown as a promising solution compared to

traditional linear menus and to pie menus. It reduces Fitts’ Law pointing time for experts and

novice users performed better with traditional menus and even worse than with pie menus.

Morphing menus [28] change the font size of each menu item depending on its prediction:

the font size is increased, respectively decreased, if the prediction is high, respectively low. While

morphing menus preserve spatial stability, they facilitate selecting accurately-predicted items, but

complexify selecting items with low or inaccurate prediction. Morphing menus made manipulation
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easier with enlarged activation areas in cascading menus. The objective was to eliminate the explicit

delay for activation found in several implementations. The study shows that enlarged activation

area and zero delays improve item selection by up to 29% in comparison to traditional methods.

Adaptive Activation-Area Menu (AAMU) [75] is an adaptive morphing menu containing an

enlarged activation area for predicted items which dynamically resizes itself providing a broader

steering path for menu navigation. AAMUs, whether they are used in isolation or combined with

Force-field menus, outperformed the static menu.

Bubbling menus [76] represent a design for cascading drop-down menus aimed at accelerating

the selection of the frequently used items by directly jumping to them one by one. To this end,

two techniques are combined: the bubble cursor, whose size dynamically changes as the cursor

moves and selects the target within the closest distance, especially for frequently-based items; and

directional mouse-gesture techniques, which accelerate reaching predicted items.

Fish-eye menus [10] display items with a font size that increases or decreases depending on

the distance with respect to cursor position: the closer, the larger, the further, the smaller. Per se,

fish-eye menus are not adaptive since their layout does not change depending on predicted items.

But similarly to AAMUs [75] and Bubbling menus [76], they are able to increase the selection area

of any item, which might be useful for predicted items.

Hyperbolic menus [51] is a Focus + Context technique for displaying and manipulating large

hierarchies. It displays several hierarchy levels at once according to a hyperbolic tree which

minimizes screen usage. All menu items are displayed on this hyperbolic tree. Since parts of the

hyperbolic view are expanding and collapsing depending on the position of the cursor, menu items

are never displayed at the same place, thus inducing spatial instability, which is difficult to use for

novice users and without fine visio-motor coordination.

Temporal menus [53] introduce a temporal dimension by displaying items on two stages: at

opening, the menu displays only predicted items, after a delay of 170ms, non-predicted items appear.

This menu maintains spatial stability, thus helping the end user to maintain a mental model of the

menu. Transposing temporal menu to smartphone is not straightforward because all items cannot

be displayed on a single screen. Any predicted item located on the subsequent screens requires a

cognitive effort to explore the whole set of items.

Ephemeral menus [34] is an adaptive temporal menu where the gradual onset was used in

order to display non-predicted items. At opening the menu, user finds predicted items and after a

delay of 500ms remaining items appear gradually. This approach suffers from the same problem of

temporal menu and items cannot be displayed on single screen in the case of a small screen device.

Lee and Yoon [53] examined a dynamic menu, where predicted items appear immediately when a

menu is opened (abrupt onset) and those outside of the subset appear after a delay.

In-Context Disappearing (ICD) approach has been applied to menus for small screens [20]: at

opening the static menu, the end user finds a superposition of the full list of items with the prediction

window prompting predicted items. This latter contains three predicted items and disappears

gradually. The presentation of predicted items in the prediction window remains homogeneous,

thus preserving spatial stability. ICD menus are a promising approach for accelerating interaction

but it generates errors caused by the overlapping of two lists.

Out-of-Context Disappearing (OCD) approach is the inverse [20]: at opening, the prediction

window is immediately displayed with the predicted items, like in a split menu; after 500 msec [34],

the complete menu is gradually displayed from the back, thus replacing the prediction window.

Evanescent menus [21] are adaptive menu where the prediction window is first presented

superimposed to the initial menu and then progressively made transparent to reveal the menu,

thus enabling the user to select a predicted item if it belongs to the prediction window and the

initial menu after.

ACM Trans. Interact. Intell. Syst., Vol. 9, No. 4, Article . Publication date: November 2019.



:8 J. Vanderdonckt et al.

Step‐by‐Step menu Shortcut menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

MenuItem3
MenuItem6

Close

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

MenuItem3.2
MenuItem6.7

Close

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

MenuItem3
MenuItem6

Cloud menuPolymodal menu

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4

MenuItem5
MenuItem6
MenuItem7

Flower menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem2 MenuItem4

MenuItem3

MenuItem6

MenuItem1

MenuItem8MenuItem7

MenuItem5 ItemA

Leaf menu
Bouquet
menu

Fig. 3. Catalogue of menus: part 3/3 discussed in the Related Work.

Step-by-Step Menus [17] displays at each level of the hierarchy the prediction window and

offers to select the menu item leading to the next level of the target path. Shortcut Menus [16]
display the target item in a prediction window at the root level of the hierarchy. A comparison

between two graphical adaptive menus, i.e., shortcut menus vs. step-by-stepmenu, was conducted to

improve hierarchical navigation in smartphones [16]: step-by-step menus preserve the consistency

with the static menu through level-by-level navigation to reach the predicted item. Shortcut menus

directly moves the end user to the predicted item in its very right location, thus reducing if not

eliminating the effort for navigating in the menu hierarchy.

Polymodal Menus [18] are graphical adaptive menus in which any menu item can be selected

graphically (by pointing), vocally (by voice recognition), tactilely (by touching), gesturally (by

issuing a gesture representing the menu), or any combination of them. Predicted menus are rendered

by graphical or vocal prediction window. This user study suggests that polymodal menus represent

a promising interaction technique for adaptive menus on a smartphone, particularly when eye-free

condition should be imposed.

Cloud Menus [78] are an adaptive split menu for small screens where the predicted menu items

are arranged in a circular tag cloud with a location consistent with their corresponding position in

the static menu and a font size depending on their prediction level. An empirical study suggests

that cloud menus reduce item selection time and error rate when prediction is correct without

penalizing it when prediction is incorrect, compared to two baselines: a non-adaptive static menu

and an adaptive linear menu.

From a survey of visual menus [6], several other types of menus could be identified as candidates

for becoming an adaptive menu, either for normal screens or for small screens. We hereby review

the most significant of them.

Flower menus [? ] extend marking menus with opportunity to draw straight lines or curved

ones into the eight cardinal directions of a compass, which can optionally be terminated by bended,

cusped, and pig-tail endings. A comparative study of flower, linear and polygon menus shows that

polygon and flower menus offer better performance for learning in expert mode as compared to

linear menus. But as for previous techniques, flower menus do not accommodate well with small

screens unless there is space enough to capture gestures on the device surface.

Wavelet Menus [36] promote with a circular and linear layout, while Leaf Menus [70] are
optimized for item accessibility.
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Bouquet Menus [25] consist of a marking menu offering flicks and marks from an origin

towards the directions of the eights octants of a cube, thus generalizing the Flower Menu [? ] into
three dimensions. The area of 3D menus [49] is however out of scope of this paper.

Stacked half-pie menus [43] display menu items as circles in half pie on a tabletop surface.

This interaction technique tends to make this design unlimited in terms of menu depth and breadth

while still maintaining the initial form of the menu. This menu is limited for small screen devices

like smartphones where there is not enough space on the screen. In addition, the navigation in the

pie menu may be a constraint for novice users.

PocketMenu [67] exploited the idea of changing the modality for menu selection: menu items

are laid out along the border of the touch smartphone within the hand comfort zone, tactile features

guide the hierarchical navigation, a vibro-tactile feedback with speech allows identifying the items

non-visually. This interaction technique is particularly useful for end users with visual disabilities.

Although the aforementioned menus present significant advantages that have been empirically

assessed, these menus are not simultaneously aimed at small screen devices and adaptivity. Menu

optimization also represents an active area of interest for graphical adaptive menus.

MenuDesigner [77] is aimed at automatically generating a menu bar, associated cascading

menus, and menu items based on an activity chaining graph representing possible hierarchical

navigation based on a task model [14]. This approach remains static (the menu structure is generated

once for all), without any adaptation and could lead to inconsistent menus when items are arranged.

MenuOptimizer [7] is aimed at helping designers and developers to optimize the menu structure

by maximizing consistency vs performance based on ant colony algorithm. While MenuOptimizer

reveals the popularity of menu items by a color line under each menu item, thus leaving the menu

structure untouched, it does not provide end users with an adaptive menu.

MenuErgo [47] provides a software environment for designing a menu bar along with its pull-

down menus and sub-menus of a graphical user interface by automatic evaluation of menu usability

guidelines according to four evaluation strategies: an active strategy initiated by the system, a

passive strategy initiated by the designer, a mixed strategy shared by both of them, and a strategy

by conceptual units based on the semantic domain.

3 DESIGN SPACE FOR GRAPHICAL ADAPTIVE MENUS
To define our design space, we rely on Bertin’s semiology defining eight visual variables to effectively
and efficiently convey a change [11] (Fig. 4): position (e.g., change in the x , y, z location), size (e.g.,
change in length, area, or repetition), shape (e.g., change by shape, regular or not), value (e.g., a
change of color saturation, a change from light to dark), orientation (e.g., a change in alignment,

angle), color (e.g., change in hue at a given value), texture (e.g., a change in pattern, in gradient),

and motion (e.g., a change by animated transition or a visual effect). The eight visual variables

have become a reference in visual design, information visualization, communication, and Human-

Computer Interaction. Bertin also defined five marks, which are basic signs representing some

piece of information other than itself:

(1) Points: are elementary signs that can be modulated by size, shape or color for visualization.

(2) Lines: are signs composed of a segment of points modulated by length, line type, thickness.

(3) Areas: are signs composed of a series of lines having a length, a width to form a 2D size.

(4) Surfaces: are signs composed of a series of areas to form a flat object in a 3D space, i.e.,

without any thickness.

(5) Volumes: are signs having a length, a width, and a depth, thus having a 3D form.

Each visual variable serves one or many purposes: selective (is a change perceivable enough to

allow us to select it from a set?), associative (is a change perceivable enough to allow us to perceive
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Position

Size

Shape

Value

Color

Orientation

Texture

Motion

Spatial stability: position and orientation are 
constant

Physical stability: size and shape are constant

Format stability: value, color, and texture are constant

Temporal stability:
motion is constant

Fig. 4. The Design Space for Graphical Adaptive Menus.
Visual variable Selective Order

Position

Size

Shape

Value

Color

Orientation

Texture

Motion

Table 1. Level of support of visual variables expressed according to Harvey’s Balls.

it as a whole?), quantitative (is a change perceivable enough to convey a numerical interpretation

of it?), order (are changes according to this variable perceived as ordered?), and length (how many

differentiations could be perceived by changing this variable?). Bertin’s visual variables have a

varying ability to be selective and/or ordered, which are the two main expected properties for

adaptivity (Table 1). Four stability properties [17] could be defined depending on which visual

variable has not been altered by a graphical adaptive menu:

(1) Spatial stability is defined as the ability of a graphical adaptive menu to preserve its spatial

layout after adaptivity, thus keeping position and orientation constant.

(2) Physical stability is defined as the ability of a graphical adaptive menu to preserve its physical

configuration after adaptivity, thus keeping size and shape constant.

(3) Format stability is defined as the ability of a graphical adaptive menu to preserve the format

of its layout after adaptivity, thus keeping value, color, and texture constant.

(4) Temporal stability is defined as the ability of a graphical adaptive menu to preserve its position

over time while being adapted, thus keeping motion constant.
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Menu
type

Property

Spatial Physical Format Temporal

Position Orient. Size Shape Value Color Text. Motion

Static menu Constant

Probability-based menu var.

Frequency-based menu var.

Split menu var.

Split menu with replic. var. var.

Split menu with scroll var. var.

Split menu with arrow var. var.

Smart menu var. var. var.

Gapped menu var.

Bolding menu var.

Highlighting menu var.

Pink menu var. var.

Adaptable menu var.

Ad. double split menu var.

Ad./ad. bolding menu var. var. var.

Ad./ad. minimized menu var. var. var.

Mixed initiative menu var. var.

Square menu var. var. var.

Morphing menu var. var.

Adapt. activation-area

m.

var. var. var.

Bubbling menu var.

Fish-eye menu var. var. var.

Hyperbolic menu var. var. var. var. var.

Temporal menu var. var.

Ephemeral menu var. var.

In-Context disapp. m. var. var.

Out-of-context dis. m. var. var.

Evanescent menu var. var.

Step-by-step menu var. var.

Shortcut menu var. var.

Polymodal menu var.

Cloud menu var. var. var.

Flower menu var. var.

Leaf menu var. var. var. var. var.

Bouquet menu var. var. var. var.

Table 2. Existing graphical adaptive menus compared by stability property.

Table 2 compares existing graphical adaptive menus with respect to the four aforementioned

stability criteria by detailing which visual variable is affected. The first line of Table 2 characterizes a

static menu, which obviously keeps constant all visual variables, thus satisfying the four properties.

For each other graphical adaptive menu, only the visual variables that are not preserved are reported

in each entry. For instance, probability-based menus, as well as frequency-based menus, do not
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Frequency‐based menu Frequency‐based colored menuFrequency‐based menu with bar
Position
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Shape

Value

Color

Orientation

Texture

Motion

Fish‐eye menu

Fig. 5. Menus on the Design Space: (a) Probability-based menu, (b) Various frequencies, (c) Fish-eye menu.

keep constant the position of menu items, therefore spatial stability is not established. Conversely,

physical, format, and temporal stabilities are satisfied. Since the prediction window should appear

in some different way than the static menu, each visual variable could in principle initiate a family

of graphical adaptive menus. The design space is represented as a radar diagram (Fig. 4), where

each axis denotes one visual variable at a time, with a scale ranging from the central point (no

coverage) to low, medium, and high coverage. By connecting the dots on each scale, a graphical

adaptive menu is graphically represented by a footprint on the radar diagram. Exploring the design

space induced by the eight visual variables should serve three virtues (Fig. 4) [9]:

(1) Descriptive virtue: each menu selection technique could be characterized on the design space

with the same terms. For instance, Fig. 5a represents the probability-based menu in terms of

the design space. According to Table 2, only the position is variable, which represented as a

higher value on its corresponding axis.

(2) Comparative virtue: two or more menu selection techniques could be consistently compared

against the same criteria, representing the dimensions of the design space. For instance, Fig.

5b superimposes three ways to represent the frequency of menu items: by position, by color,

by a histogram representing the frequency.

(3) Generative virtue: the analysis of existing techniques based on the design space should enable

us to report on already well-covered areas and to identify gaps to be filled in by suggesting

new, potentially unexplored, techniques. For instance, Fig. 5c represents how fish-eye menus

could be exploited for focusing on predicted items as opposed to unpredicted items. This

usage of fish-eye menus has never been considered.

Based on this design space, we now investigate eight families of graphical adaptive menus by

systematically examining each visual variable. For each family, either new designs or extrapolated

designs are introduced and discussed. When a graphical adaptive menu is extrapolated, its basic

reference will be mentioned. For instance, [68] invented the twisting icons, it is transposed here to

graphical adaptive menus as twisting menus. When a graphical adaptive menu touches several

visual variables at once, it will fall in the family corresponding to the most relevant or salient visual

variable. How these designs preserve stability properties is summarized in Table 3.

3.1 Position-Changing Menus
Graphical adaptive menus where the position of predicted items changes depending on the predic-

tion scheme are the primary form of adaptivity investigated ever, with probability-based menus

[74], frequency-based menus [63], split menus with replication [39] or without [72] as their most

representative examples. Despite their reported benefits, such as the fastest overall performance

[28, 72], these menus are challenging when machine learning algorithms pick the wrong items in

ACM Trans. Interact. Intell. Syst., Vol. 9, No. 4, Article . Publication date: November 2019.



Exploring a Design Space of Graphical Adaptive Menus:
Normal vs. Small Screens :13

Menu
type

Property

Spatial Physical Format Temp.

Position Orient. Size Shape Value Color Texture Motion

Static menu Constant

Pushpin menu var. var. var.

Time-based menu var. var.

Localized menu var. var.

Flippable menu var. var. var.

Twisting menu var. var. var.

Rotating menu var. var. var.

Pulsing menu var. var. var.

Prediction by bar var. var.

Prediction by scale var. var.

Rating menu var. var.

Greyscaling menu var.

Italicizing menu var.

Underlining menu var.

Boxing menu var. var.

Font-changing menu var. var.

Transparency menu var.

Blurring menu var.

Blinking menu var. var.

Rainbow menu var. var.

Glowing menu var. var. var.

Prediction by color var.

Heatmap menu var. var.

Prediction by line var. var.

Prediction by rainbow var. var. var.

Fish-eye colored m. var. var. var.

Textured menu var.

Patined menu var.

Weared menu var. var.

Table 3. New or extrapolated graphical adaptive menus compared by stability property.

the prediction window, thus making it more difficult to complete low frequency tasks. When menu

items are moving around, they undermine the end user’s memorability of the system, especially

in multi-tasking and multi-device environments. All these menus are largely criticized for endan-

gering their spatial stability, which may confuse end users in the ultimate item positions that are

perpetually changing, thus preventing them from building a permanent mental model based on

their layout. Split menus with replication partially escape from this drawback: the end user may first

check whether the desired item belongs to the prediction window and, if not, browse the normal

menu. The static part is position-invariant whereas the prediction window is not. Other suggested

forms of position-changing menus are (Fig. 6a): the pushpin menu (a split menu where predicted

items can become permanently placed by locking them with a pushpin) and the time-based menu
(a multi-split menu where predicted items are sorted in chronological time). This induces a new

category of split menus where different portions could contain different split areas according to
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Fig. 6. Catalogue of menus: part 1/4 of new designs with position-changing (a) or orientation-changing (b).

different prediction scheme: single split, double split (as in Fig. 1), or multi-split menu. Later in this

exploration, other families of variable-changing menu will inevitably affect the position and thus

the spatial stability: menus with layout and/or a selection area modified by the prediction. Adaptive

activation-area menus [75] are representative as they change the selection area depending on the

prediction of each item. Similarly, morphing menus [28] or square menus [1], enlarge this zone by

resizing it as a rectangle or a square.

3.2 Orientation-Changing Menus
Any technique changing the orientation of predicted items falls in this category. A typical example

concerns hyperbolic menus [51], which are not a graphical adaptive menu per se. But the visualiza-

tion technique can expand sub-trees unveiling predicted items and collapse sub-trees containing

unpredicted items. Since items are distributed along a hyperbola, their orientation changes as the

tree is expanded or collapsed. This visual variable has never been subject to any investigation

as far as we know, although it has some potential to be further examined. For instance, label

orientation, i.e., horizontal, vertical, angular, could be considered for emphasizing a predicted item,

especially in cloud menus [78]. When a localized menu is adapted according to the end user’s

culture and language, items can be flipped automatically [48] between a Left-to-Right (LTR) format

as used in Western cultures and a Right-To-Left (RTL) format as used in Arabian languages, or from

Top-To-Bottom (TTB) to Bottom-To-Top (BTT), thus giving rise to a flippable menu. Similarly to

twisting icons [68], twisting menus briefly change the orientation of predicted items by twisting
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Fig. 7. Catalogue of menus: part 2/4 of new designs with size-changing (a) or shape-changing (b).

them with respect to the horizontal, while in rotating menus, predicted items are subject to a 360
◦

rotation. The speed and the frequency to be used for these animations are yet to be determined,

although we know that the speed should last more or less 500 msec and the frequency should not

repeat the same animation too many times in order not to induce any boredom.

3.3 Size-Changing Menus
Four types of actions can modify the menu size: modifying the selection area (such as in morphing

menus [28]), adding another menu part (such as in split menus with replication [39], adding another

user interface element for shortcutting the menu hierarchy (such as in shortcut menus [16], and

translating/localizing their labels (e.g., translating an English item produces a longer item in French

and even longer in German). Size can be further decomposed into four sub-variables depending

on how many dimensions are considered: line (for a one-dimensional change), surface (for a two-

dimensional change), multi-surface (for a 2D1/2 change when a surface is projected onto another

one), and volume (for a three-dimensional change). The pulsing menu (Fig. 7a), inspired by the

pulsing icons [68], pulse forward predicted items, thus changing their size until they return to their

initial state. Pulsing is perceived less intrusively than strong animations found in a rotating menu.

3.4 Shape-Changing Menus
While the rectangle remains the predominant shape for menus, other shapes have been considered,

but not necessarily for adaptivity. For instance, square menus [1] delineate a rectangular area

for each menu item appearing in a squared menu to improve item selection. Radial menus [57]
present menu items according to a (semi-)circular layout, showing that for different breadths and

depths, they can be superior to their equivalent cascading menu counterpart. What has not been

investigated so far for adaptive menu are shape-changing menus: depending on the amount of

predicted items and the prediction scheme, the menu could gracefully evolve from one shape to

another that is more suitable for displaying the items as they are: circle, oval, square, rectangle,

pentagon, hexagon, heptagon, octagon, parallelogram, trapezium, etc. Some of these shapes have

been particularly exploited for gesture-based menus. Shape-changing menus should be possible to

highlight predicted items when hovering for instance: the shape of the menu bar would change

from a square to a somewhat rounded shape or other shape when you hover over them, thus

revealing items only on demand. The menu shape is also affected when the prediction window

is moved onto a separate area, which makes it more distinguishable by end users [82], as in split

menus with replication [39]. This prediction area is itself subject to shape-changing: line (e.g., for

expressing the frequency of a menu item in frequency-by-line menus), histogram, square, rectangle,

circle as in cloud menus. Fig. 7b suggests three shapes to convey the likelihood of predicted items: a

bar superimposed to the item in the prediction-by-bar menu, a bar juxtaposed to the item with a

scale such as a histogram in the prediction-by-scale menu, or a rating scale in the rating menu.
The last two menus considerably increase the menu width.

ACM Trans. Interact. Intell. Syst., Vol. 9, No. 4, Article . Publication date: November 2019.



:16 J. Vanderdonckt et al.

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

Glowing menu

Blurring menu

ItemA

Transparency menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

Underlying menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

Font‐changing
menu

MenuItem1
MenuItem2
MenuItem3 
MenuItem4
MenuItem5
MenuItem6 
MenuItem7

ItemA

Boxing menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

Italicizing menu

MenuItem1
MenuItem2
MenuItem3
MenuItem4
MenuItem5
MenuItem6
MenuItem7

ItemA

Greyscaling menu

Blinking menu Rainbow menu

ItemA

MenuItem1
MenuItem2
MenuItem3 
MenuItem4

MenuItem5
MenuItem6 
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3 
MenuItem4

MenuItem5
MenuItem6 
MenuItem7

ItemA

MenuItem1
MenuItem2

MenuItem4

MenuItem5

MenuItem7

MenuItem3 

MenuItem6 

ItemA

MenuItem1
MenuItem2
MenuItem3 
MenuItem4

MenuItem5
MenuItem6 
MenuItem7

ItemA

MenuItem1
MenuItem2
MenuItem3 
MenuItem4

MenuItem5
MenuItem6 
MenuItem7

ItemA

MenuItem1
MenuItem2

MenuItem4

MenuItem5

MenuItem7

MenuItem3 

MenuItem6 

Fig. 8. Catalogue of menus: part 3/4 of new designs with value-changing.

3.5 Value-Changing Menus
Any user interface highlighting technique can be applied to predicted items in value-changing

menus: bold, italics, underscores, boxes, capitalization, single or double quotation marks, alternate

fonts, emphasis techniques in computer text, or any combination of the preceding. Color is con-

sidered in the next family. Highlighting menus [3] highlight predicted items by contrast, which is

viable since up to three levels of contrast are usually distinguishable by end users. Bolding menus

[3] apply a bold font to predicted items. These two menus were introduced for a comparison with

split menus, adaptable menus, and traditional menus on a desktop [32]. This study showed that

the adaptable menu outperformed the other menus in terms of overall performance and subjective

satisfaction. The split menu was estimated sub-optimal, especially when the predicted frequency

changed. The bolding menu was not significantly better than when working with variations in the

traditional menus, but was preferred by end users since less sensitive to the variations of prediction

that its counterparts. Fig. 8 suggests several forms of value-chaining menus: the greyscaling
menu where items are greyscaled depending on their prediction (the more greyscaled, the less

predicted), the italicizing menu where predicted items are formatted in italics, the underlying
menu where labels of predicted items are underlined, the boxing menu where predicted items

are surrounded by a visual frame, or the font-changing menu, where a different font is used

for representing predicted items as opposed to unpredicted ones. This technique heavily depends

on the font legibility (e.g., sans-serif fonts are more legible on screen than serif fonts) and their

recognizability (some popular fonts can be recognized but not all). Many other visual effects could

be envisioned but their effectiveness and efficiency is not demonstrated yet: unpredicted items

could be subject to a transparency stencil in a transparency menu, blurred in a blurring menu,
subject to blinking with a small rate in a blinking menu, animated with a rainbow in a rainbow
menu, or glowing to make them more salient in a glowing menu as in Phosphor Widgets [8].

3.6 Color-Changing Menus
Color-changing menus [68] were proposed in order to reduce visual search time: frequently used

items are highlighted by changing their background or foreground (font) color or both. The study

compared color menus to fish-eye menus [10]: on smartphones, color menus require a lot of
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Fig. 9. Catalogue of menus: part 4/4 of new designs with color-changing (a) or texture-changing (b).

concentration from the user, especially when predicted item is located at the bottom of the screen.

The user must scroll the window to see the item. For instance, a prediction-by-color menu

(Fig. 9a) would display all items with a color code associated to the prediction level, while in a

prediction-by-rainbowmenu, menu items would be sorted and displayed according to a rainbow

color scheme. We suggest that a heatmap menu color its items in a heatmap depending on their

frequency of use. Contrarily to split menus where frequent menu items are first presented or to

morphing menus where frequent items are enlarged, heatmap menus do not change their layout.

The perception of the heat map may induce some usability problems, since rainbow scales are not

always correctly interpreted. Heatmap menus could be presented in two ways: the heatmap shows

all dots generated by interaction on a menu item (e.g., a mouse click, a finger touch, an eye saccade

captured by an eye tracker), or on the entire item region by aggregating the dots and attribute them

to the menu item that actually generated them.. Since visual variables are independent of each

other, more than one variable could be used to reinforce the adaptivity when critical. For instance,

a prediction-by-color menu sorts items in decreasing order of prediction rendered on a rainbow

scale: both position and color are altered. A fish-eye colored menu plays mainly with size (since

the size of items depends on the cursor position), but also with position because the change of size

implies a change of absolute position, but not a change in the item ordering.

3.7 Texture-Changing Menus
A textured menu results from applying any change of the texture of predicted and/or unpredicted

items without changing the rest of its format. Patina [61] dynamically creates a heatmap depicting

how frequently a user interface element, such as a menu item or an icon, is used. The Patina is

overlaid to the initial user interface, for instance a toolbar, an icon palette. This inspires a patined
menu, where menu items are overlaid with a transparency texture depicting their usage: the more

predicted, the more visible. Instead of progressively hiding unpredicted items, which may prevent

end users from appropriately locating them, we can also introduce a weared menu, which change

their texture based on their usage frequency (MFU) and recency (MRU). Computational wear [59]

textures web site links based on three measures:

(1) The last update date, which estimates the usefulness of a web site: a newly updated site

usually contains latest and timely information. The length of the period from the last updated

date to the current is mapped to the magnitude of the rust of its metallic-like icon: the older

the last update is, the more rusty the link appears.

(2) The total number of access times, which estimates the popularity of the site: a well-accessed

site usually contains useful information. This number is mapped to the wear and smudge of

the icon: the more often the link is used, the more worn out and smudged it appears.

(3) The last access date, which measures the recent popularity and also the usefulness of a site.

The length of the period from the last accessed date to the current is mapped to the amount

of dust accumulated on the surface of the icon: the older the last access is, the more dusty

the link appears.
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3.8 Motion-Changing Menus
Although the time dimension expresses a fourth sub-variable of position (i.e., add t after x , y,
and z), time is typically involved in the motion variable, especially in information visualization.

Motion could be even further decomposed into sub-variables, such as: direction, speed, frequency,

rhythm, flicker, trails, and style. Temporal menus [53] introduce a temporal dimension by displaying

items on two stages. At opening, the menu only displays predicted items, and, after a delay of

170ms, non-predicted items appear. This menu maintains spatial stability, thus helping the end

user to maintain a mental model of the menu. Transposing temporal menu to smartphone is not

obvious because all items cannot be displayed on a single screen. Any predicted item located on

the subsequent screens requires a cognitive effort to explore the whole set of items. All menu types

relying on animation of predicted items fall in this category:

• Ephemeral menus [34] are adaptive temporal menus where the gradual onset was used in

order to display non-predicted items. Upon opening the menu, user finds the predicted items

and, after a delay of 500ms, remaining items appear gradually. This approach suffers from

the same problem as the temporal menu: items cannot be displayed on single screen in the

case of a small screen device.

• In-Context Disappearingmenus [20] open the traditional menuwith a superimposed prediction

window prompting three predicted items that disappears gradually.

• Out-of-Context Disappearing menus [20], at opening, display the prediction window imme-

diately; after a delay of 500 msec, the complete menu is gradually displayed from the back,

replacing the prediction window.

• Evanescent menus [21] superimposes the prediction window to the static menu and then

progressively makes it transparent to reveal the menu, thus enabling the user to select a

predicted item if it belongs to the prediction window and the static menu after. The main

difference with ephemeral menus is that a prediction window is subject to animation as

opposed to the static menu. The difference with ICD menus is that a continuous morphing

between the prediction window and the menu is performed.

In principle, any computer-based 2/3D animation technique can produce several variations

of motion-changing menus. The impact of the animation technique, which ranges from subtle

transitions (e.g., fade, push, wipe, split, cover, uncover) to more striking ones (e.g., zoom, switch,

flip), should be chosen depending on the criticality of predicted items [30].

4 PREFERENCE ANALYSIS
To get a first idea of how end users perceive graphical adaptive menus, a preference analysis was

conducted to determine their preference. Preference is often compared to performance [64]: end

users sometimes prefer user interfaces that are not necessarily performant and they also become

efficient with user interfaces they are not satisfied with. In the previous section, 49 types of graphical

adaptive menus were identified. Unlike other research experiments, we did not choose to present

one menu at a time and asking each participant to evaluate it separately: such a repetitive task

would lead to participant’s fatigue. Instead, we chose to conduct a preference analysis with a

comparison method. This approach benefits from several advantages: participants do not need to

remember the assessment given to previous menus; this avoids inconsistent and conflicting results;

the assessment is simplified by avoiding each participant to evaluate different measures for each

menu; instead of evaluating qualitative measures on a Likert scale and/or quantitative measures

for one menu at a time, the participants are presented with a pair of two candidate menus to be

compared. Preference analysis can be supported using any paired comparison model.
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4.1 Method
4.1.1 Apparatus. We developed and installed an on-line A/B testing survey application where

two graphical adaptive menus were randomly selected from the pool of 49 menus and presented

individually to the user so as to select by clicking on the most preferred one from a visual viewpoint.

For every positive selection, one point is given to the global score of the menu. If the participant is

undecided, there is the possibility to click on the ”Tt is a draw” push button, no point is assigned

and two new menus are further presented. Since the pool comprises 49 graphical adaptive menus,

a complete comparison would generate 49
2 = 2, 401 menu pairs to be compared per participant,

which is of course prohibitive. Therefore, for each participant, the system randomly generates 50

menu pairs. In order to prevent responses biases, the menus are also displayed in a random order

and each menu pair is verified as being unique per participant to avoid any duplicate.

4.1.2 Stimuli. For each of the 49 graphical adaptive menus in the pool, a high resolution GIF

image was created depicting the menu’s behavior based on Figs. 1 to 3 and 6 to 9. For each menu

involving some visual effect such as an animation, an animated GIF file was produced respecting

the guidelines issued, such as 170 msec for the temporal menu [53], 500 msec for the ephemeral

menu [34]. For new menus, similar timing was chosen and the animation was repeated in a loop. All

these GIF files were uploaded in the A/B testing application along with a short textual description

displayable on-demand.

4.1.3 Procedure. The preference analysis requested each respondent to compare 50 randomly

generated pairs of menus and select the most preferred. No time constraint was imposed to

participants. Each experiment takes approximately fifteen minutes.

4.1.4 Participants. Participants were recruited from a mailing list maintained at Université

catholique de Louvain. No compensation was offered to volunteers. The experiment took place

remotely via our A/B testing system setup with the fifty menu pairs. Before starting the experiment,

the participants were asked to provide some personal information for statistics such as year of birth,

gender. Eighty-seven participants conducted the experiment from nine different countries speaking

five different languages (i.e., English, French, German, Dutch, and Spanish). Ten participants were

removed as outliers for different reasons: the data were incomplete, the experiment was not finished,

the data captured from the participant are strange (e.g., ”It is a draw” is selected repeatedly, the

left vs. right choice is captured repeatedly with a small timeout between, which may reflect some

boredom of a user clicking on the same entry all the time). Finally, the amount of data generated

by this experiment is 81 participants × 50 menu pairs = 4,350 samples.

4.1.5 Measures. Based on the point allocation, the system computes two measures: the number
of viewings (the total amount of times that this menu has been included in a comparison) and

the preference percentage (the ratio between the number of times the menu has been marked as

preferred and the number of viewing). Second, we draw a symmetric matrix of results associating

for each pair of menu a and b a score between +4 and -4, where a score of +4 would mean that

menu a is preferred to menu b by all respondents, whereas a score of -4 would mean that menu b
is preferred to menu a all the time. We also used the raw data obtained through the experiment

in order to compute a latent score of preference for each menu. For this purpose, we used the

Bradley-Terry-Luce (BTL) model to establish a ranking attached with a score for each menu giving

an order of magnitude to the same ranking. The raw data feed a preference vector for each menu

containing the matches (+1 if preferred, -1 if unpreferred, and 0 otherwise) and then applied the

BTL method summing the probabilities for one menu to be preferred to all others. This sum of

probabilities can be seen as a latent score for the menu. The Bradley-Terry model [22] is a probability
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model that can predict the outcome of a comparison. Given a pair of individuals i and j drawn from

some population, it estimates the probability that the pairwise comparison i > j turns out true, as 1

P(i > j) = pi
pi+pj

, where pi is a positive real-valued score assigned to individual i . The comparison

i > j can be read as "i is preferred to j", "i ranks higher than j", or "i beats j", depending on the

application. It is particularly used when participants have to assess and compare many stimuli [29].

4.2 Results and Discussion
Table 4, continued in Table 5, reproduces the two measures for all 49 graphical adaptive menus

sorted in decreasing order of preference percentage. The symmetric 49 ×49 matrix and the table

with the ranking of each menu with its computed score are provided as supplemental material.

Tables 4 and 5 reveal several observations:

• The fourteen most preferred graphical adaptive menus all preserve spatial stability, being

both position-invariant and orientation-invariant. The frequency-based menu (#15) is the

first one appearing in the list with position variance, if we exclude the split with replication

menu (#8), which somewhat preserves the same stability. Many other menus with spatial

stability are also in the top list. This indicates a strong preference for spatial stability.

• These fourteen first menusmostly playwith value-changing capabilities. Out of these fourteen

menus, the rating menu (#4) and the pushpin menu (#6) are the only two instances introducing

a shape-changing (with the rating bar and the pushpin, respectively) while the fish-eye (#9)

and the morphing menu (#11) are the only one with size-changing after them. This reveals a

preference for menus which also preserve physical stability, with shape and size after.

• Surprisingly, the patined menu (#14) is the first occurrence of a texture-changing menu, long

before any other of the same category (e.g., the weared menu appears at the #38 place).

• In the category of motion-changing menus, the smart menu (#18) is well placed contrarily

to previously expressed criticism [46]. But this menu is mostly a two-state menu and is the

first one below the 50% barrier. Among all genuine motion-changing menus, the ephemeral

menu is the great winner (#22), followed by the glowing menu (#25). Other members of this

category come long after: temporal menus (#35), ICD (#37), evanescent menus (#42), and

OCD (#43) with low preference percentages.

• Color-changing menus are not well appreciated. The first instance is the prediction-by-line

menu (#19), probably because the color is supplemented by the bar length indicating the

prediction. In other menus, the color coding scheme is not favored not because people cannot

differentiate colors (studies show that the human being is capable of distinguishing up to 9

colors without any trouble), but because they cannot easily associate the color to a value,

even in the prediction-by-rainbow menu (#27) or in the heatmap menu (#34). These color

coding schemes seem to be more appropriate for visualization (e.g., to show how frequent

items are globally) than for selecting items.

• The cloud menu (#32) is the first instance of a graphical adaptive menu with a separate

prediction window, as opposed to a close one, as in split with replication (#8), which is related

to the observation that people prefer a prediction close to their locus of interest [82].

• Menus with unusual shapes are ranked low, such as the square menu (#41), the leaf menu

(#44), and the hyperbolic menu (#45). This suggests that shape-changing menus as a first

attempt to convey adaptivity is not very much appreciated.

• The rotatingmenu (#49) is the least appreciatedmenu since items are rotating, thus preventing

them from being readable.

1
https://en.wikipedia.org/wiki/Bradley-Terry_model
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Ranking Graphical adaptive menu Number of viewings Preference %
1 Greyscaling menu 122 74%

2 Transparency menu 160 71%

3 Highlighting menu 141 70%

4 Rating menu 158 67%

5 Underlying menu 148 66%

6 Pushpin menu 141 60%

7 Boxing menu 107 59%

8 Split menu with replication 120 57%

9 Fish-eye menu 138 57%

10 Bolding menu 119 56%

11 Morphing menu 148 55%

12 Prediction-by-bar menu 138 54%

13 Blurring menu 138 51%

14 Patined menu 114 51%

15 Frequency-based menu 120 50%

16 Font-changing menu 140 50%

17 Probability-based menu 139 50%

18 Smart menu 135 45%

19 Prediction-by-line menu 121 45%

20 Split menu without replication 128 44%

21 Bubbling menu 133 43%

22 Ephemeral menu 124 42%

23 Time-based menu 135 41%

24 Prediction-by-scale 112 41%

25 Split menu with scroll bar 140 40%

26 Glowing menu 146 40%

27 Prediction-by-rainbow menu 139 39%

28 Fish-eye colored menu 139 39%

29 Blinking menu 135 38%

30 Pulsing menu 139 35%

31 Square menu 126 35%

32 Cloud menu 127 35%

33 Italicizing menu 142 34%

34 Heatmap menu 123 33%

35 Temporal menu 157 32%

36 Twisting menu 120 32%

37 In-context disappearing menu 143 31%

38 Weared menu 150 30%

39 Split menu with arrow bar 141 30%

40 Step-by-step menu 132 30%

Table 4. Results of the preference analysis: menus in decreasing order of preference (1/2) percentage.
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Ranking Graphical adaptive menu Number of viewings Preference %
41 Prediction-by-color menu 145 28%

42 Evanescent menu 139 27%

43 Out-context appearing menu 132 27%

44 Leaf menu 140 25%

45 Hyperbolic menu 133 23%

46 Polymodal menu 111 23%

47 Prediction-by-rainbow menu 137 20%

48 Flower menu 118 15%

49 Rotating menu 134 10%

Table 5. Results of the preference analysis: menus in decreasing order of preference (2/2) percentage.

Menu1

Sapphire
Topaz
Pearl
Emerald

Minotaur
Sasquatch
Ogopogo
Bigfoot

Blimp
Helicopter
Airplane
Balloon
Safflower
Canota
Olive
Sesame

Menu2Menu1

Merlo
Shiraz
Chardonnay
Cabernet

Saturn
Venus
Jupiter
Mercury

Menu3

France
England
Spain
Germany
Pecan
Walnut
Almond
Pistacchio

Menu2Menu1 Menu3

Kitten
Puppy
Kit
Chick

Shout
Call
Whisper
Speak

Force
Mass
Velocity
Energy
Africa
Australia
Europe
Asia

Menu2Menu1 Menu3

France
Spain
Germany
Italy

Rock
Jazz
Classical
Grunge

Fire
Water
Air
Earth
Disgusted
Surprised
Happy
Fearful

Fig. 10. The various pull-down menus used in Findlater et al.’s [34] experiment.

5 USER STUDIES
To systematically explore the design space induced by the eight variables, the menu used by Find-

later et al. [34] for their experiment on ephemeral adaptation will be considered as a reference

menu (Fig. 10): each pull-down menu contains 4 unrelated groups of 4 related items (i.e., England,

France, Germany, Spain – Venus, Mercury, Jupiter, Saturn – Cabernet, Chardonnay, Merlot, Shi-

raz, – Almond, Pecan, Pistachio, Walnut); the prediction was defined with probabilities such as

Venus=80%, Spain, Shiraz=70%, Pecan, Cabernet, Pistachio=60%; all other items having the same

normal probability. Although this menu was originally tested on normal screens, we reused their

configuration because a Zipf distribution (Zipfian R2 = .99) across only 8 randomly chosen items

out of the 24 items was used to determine them, the semantics of each menu item do not preclude

any prior knowledge, and they are all understandable by a normal person.

5.1 Exploratory Study
Since the design space induced by the eight visual variables is wide and deep, an exploratory

study was conducted to determine the preference of end users for some variables. To this end, a

series of graphical adaptive menus were prototyped in Adobe Flash V27.0 changing one visual

variable at a time. This series was presented to gather end users’ informal feedback about their

preference (Fig. 11): size (1D vertical vs. 1D horizontal vs. 2D), shape (rectangle, circle, oval), value
(highlighting of current item, zooming in, zooming in with rotation in case of a vertical label), color,
font size, orientation by changing label angle (horizontal, vertical, angular), texture by changing font
family (regular, bold, italic, or combined), and motion by animation (without vs. with animation of

non-horizontal items). Note that some prototypes combine more than one visual change.
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(a)

(b)

(c) (d)

(e) (f)
Fig. 11. Menu prototypes based on Findlater’s menu with visual variable changing: size (a,b), shape (c), value
(d), orientation (e), and texture (f).

Size

Shape

Value

Color

Orientation

Texture

Motion

100 050 50 100 1st 2nd 3rd 4th 5th 6th 7th
Fig. 12. Participants’ rating and ranking for each visual variable.

5.1.1 Method. Each participant performed the task in a controlled environment. Prior to the

task each participant was welcomed, had the process explained to them, signed a consent form,

and filled in a questionnaire on their background. After the questionnaire was completed, the

experimenter demonstrated the initial prototypes on screen. The participants were given 5 min. to

familiarize themselves with the prototypes and ask any question. The participant could finish this

part early. The participants were then given 15 min. to browse the series of prototypes. During this

experiencing time, the experimenter sat next to the participant and observed them. In the end, each

participant rated each family of prototypes (one family per visual variable) using a five point Likert

scale [56] (1= strongly disagree through to 5=strongly agree) and ranked the families in decreasing

order of preference.

5.1.2 Analysis. After each participant, the questionnaire, ratings and ranking data was entered

into a spreadsheet in an anonymous format so the participants could not be identified.

5.1.3 Results and Discussion. A total of thirty participants (M = 32.3 years, SD = 6.2 years,

12 female and 18 male) participated in this experiment. All participants were regular computer

users and recruited in our organizations through a mailing list. They have different backgrounds

such as: accounting, finance, information systems, management, marketing, and human resources.

They were all volunteers: they were not given any remuneration (financial or otherwise). Fig. 12
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Press [‐]

Press [+]
Scroll 
down

Scroll 
up

Select 
unpredicted 

item

Select 
predicted 

item

High
prediction

Medium
prediction

Low
prediction

First screen Second screen

Fig. 13. The Cloud Menu: a circular adaptive cloud contains predicted items that can be made (in)visible by
pressing [+], [-].

graphically depicts the correspondence between the distribution of visual variables in terms of

preference (represented as a divergent horizontal stacked bar in the left part of Fig. 12 with this

coding: red=strongly disagree, orange=disagree, yellow= neutral, light green=agree, dark green=

strongly agree, the yellow neutral part is divided into two equal parts) and the distribution of

ranking (represented as vertical bars from the fist place to the last place). The preferred visual

variables are respectively: shape (82% of the 30 participants), value (71%), size (66%), motion (61%),

color (46%), orientation (40%), and texture (22%). Shape was also ranked first followed by motion.

Value was ranked second the most frequently, followed by shape. Motion was ranked third the most

frequently, followed by shape. With seventh rank most frequently assigned, texture was judged the

least preferred variable for conveying adaptivity because of its questionable legibility. In conclusion,

shape was selected as the visual variable for further investigation in the next controlled experiment.

5.2 Controlled Experiment
The final design of the cloud menu resulted into a widget in Java for Eclipse based on Android

Software Development Kit. The cloud menu consists of a linear list for the static menu superimposed

by a prediction window materialized as a circular word cloud with three prediction levels (Fig. 13):

(1) any item with high prediction (probability > 80%) is located in the center of the circle highlighted

with large font size; (2) any item with medium prediction (60% > probability > 80%) is presented in

the periphery with a decreasing size font and a larger distance from the center depending on the

probability (the lower the prediction, the more far and the smaller the item becomes) ; (3) any item

with low prediction (probability < 60%) is displayed only in the static menu.

The Cloud Menu for Findlater test (Fig. 10) is depicted in Fig. 13: the France item with high

prediction is presented in the center with the largest font size; Venus and Pecan with medium

prediction are presented afterwards on a position indicating the original position of item in the

static menu; Mercury, Walnut and Saturn with low prediction are located in the periphery with

an increasing distance from the center and a decreasing size font. Note that the Pecan item is

located on an imaginary line indicating an off-screen location. When prediction is correct, the user

selects the item directly from the Cloud Menu. When prediction is incorrect, the user makes the
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Fig. 14. The Linear Menu: a linear list with six predicted items in the prediction window.

cloud menu disappearing by pressing the [-] button and selects the item from the static menu after

scrolling down/up.

A controlled experiment was conducted based on two conditions: a Control condition (or baseline),

which presents the Findlater test in a static menu without any adaptation and prediction and a

Cloud Menu, which presents the Findlater test as a Cloud Menu with 6 items in the prediction

window. To test the influence of the circular layout of the Cloud Menu, a third condition was

developed: the Linear Menu, where both prediction window and full list of items are presented as

superimposed linear lists (Fig. 14), but without any cloud. To move backward and forward from/to

the prediction window, the two [-] and [+] push buttons are also added. Regarding screen real estate,

menu items in the prediction window occupy the same height than normal items in the linear

menu, but thinner to avoid complete occlusion and to let underlying items be partially visible.

5.2.1 Hypotheses. We made the following assumptions:

Speed with high prediction
H11 = The Cloud Menu and the Linear Menu will be faster than Control condition. When prediction is

correct, the user finds the target item among 6 predicted items in the Cloud Menu and in the Linear

Menu more quickly than in Control condition where the target belongs to a list of 4 × 4 = 16 items.

H21 = The Cloud Menu will be faster than the Linear Menu. The circular layout of the 6 predicted
items with different font sizes and positions is faster than a linear list without any visual distinction

between predicted items.

H31 = A target item located in the center of the Cloud Menu will be selected faster than when located
in its periphery. Indeed, a target item located in the center is considered easy to find because it

is emphasized with a large font size (thus inducing a larger activation area as in AAMU [75]),

contrarily to a target item located in another part of the cloud menu.

Speed with low prediction
H41 = The Cloud Menu and the Linear Menu will not be worse than Control condition. Cloud and

Linear adaptive menus will not be worse than the static menu as they avoid penalizing interaction

when prediction is incorrect. The button should enable the end user to escape from the Cloud Menu

and Linear menu in case of an incorrect prediction.

H51 = The Cloud Menus will be faster than the Linear Menu. Exploration of predicted items will be

easier in the Cloud Menu, where items are emphasized with different font sizes and positions, than

in the Linear Menu.
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H61 = In all conditions (Cloud Menu, Linear menu and Control condition), the target item will be
selected faster when located on the first interaction screen than on the second. Accessing a target item

on the first screen will be faster and easier than on the second screen requiring vertical scrolling.

Error rate with high prediction
H71 = The error rate of the Cloud Menu is similar to the Linear Menu. When the target item is one

of the 6 predicted items in Cloud and Linear Menu, the visual search time and selection time are

reduced, which also reduces error rate.

H81 =When target item is located in the center of the cloud, errors will be less frequent than when
target is in its periphery. User attention will be attracted to the center where an item is displayed

with a larger font size compared to items in other parts of the cloud, thus facilitating selection.

Error rate with low prediction
H91 = No significant difference between all conditions. When prediction is incorrect in both adaptive

conditions (Cloud and Linear), the prediction window will not be used and will disappear, thus

generating the same error rate.

5.2.2 Method. Our study was between-subjects with three independent variables:

(1) TheMenu Type, a nominal variable with three conditions, representing the the baseline with

and without adaptivity and the cloud menu subject to testing: Control Condition (C), Cloud
Menu (CM), and Linear Menu (L).

(2) The Target Location, nominal variable with conditions, representing the location of the

menu item to be selected: in the cloud (C), in the first screen (F ), or in the second part of the

screen (S). The first screen contains the observable portion of items while the second screen

is browsable by navigation, such as scrolling, panning.

(3) The Level of Prediction, ordinal variable with two conditions, i.e., low and high, which

were decided to test the performance when prediction algorithm works well or not.

Each menu is divided into two screens of 8 items, all coming from Findlater’s test [34], in its

periphery, or outside in case of incorrect prediction. Accurate prediction level is when prediction is

correct and target item is inside the Cloud Menu without any restriction. Inaccurate prediction level

is when prediction is incorrect and target item is outside the Cloud Menu. The same behavior occurs

in the Linear Menu where the target item was also controlled randomly between two prediction

accuracy levels. High prediction level is when prediction is correct and target is one of the six

predicted items present-ed on the prediction window. Low prediction level is when prediction is

wrong and target is outside the prediction window. For both high and low prediction levels, the

target item always appears in the static menu.

5.2.3 Task. A between-subjects design was decided to avoid any carryover effects such as

practice (learning effect) and fatigue: two independent groups of participants were asked to perform

a sequence of item selections. Participants of the first group tested Cloud Menu and Control

condition, while the second group tested Linear Menu and Control Condition. Participants were

divided into two groups using matched-group design, through which the subjects were matched

according to their age and then allocated into group. For each condition, first, a message appeared

indicating the target item to select. Then a list of items appeared and the target item was displayed

at the screen top as a reminder.

In Cloud Menu, participants selected the target item from the Cloud of predicted items and/or

from the static menu. In Linear Menu, participants selected the target item from the prediction

window and/or full list of items.

In Control condition, participants selected target items from the main list on the first or on the

next screen. When the selected item matched the requested target item, a new message appeared
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indicating next target item until the test was complete. When the selected item did not match the

requested target item, an error message prompted the participant to select the right target before

moving to the next target. When the test was complete, a ”thank you” message was displayed.

Selections were performed by finger touch on the touchable surface of the smartphone, no stylus

or pen were used. Generally, participants were holding the smartphone in their left hand and had

to point with right hand (index finger). In each menu, order and position of items were controlled

and changed randomly after ten selections in order to avoid any learning effect. Selection sequence

(target selection) was also randomly controlled. Target position on first screen or on second screen

and prediction accuracy level were also controlled. Each participant had to execute 20 item selections

in the Control condition, 20 item selections in the Cloud+High prediction condition and 20 item

selections in the Cloud + Low prediction condition, 20 item selections in the Linear +High prediction

condition and 20 items selections in the Linear+Low prediction condition. Selections in the Cloud

and Linear were mixed to avoid any learning effect induced by a repetitive usage.

5.2.4 Quantitative and qualitative measures. The dependent variables measured were:

(1) The menu item selection time (in seconds), which was measured as the time taken from

opening the menu until final selection of requested target.

(2) The error rate (in percentage %), which was measured as the ratio of successfully achieved

selections by the total amount of selections.

5.2.5 Apparatus. Android-based Google Nexus smartphones were used, with 2 Gb LPDDR3

RAM, 16 Gb of storage and a 1920 x 1080 pixel screen resolution (423 ppi). The cloud diameter is

equal to the screen width. Hence, the cloud menu surface in this case is: S = π × (l/2)2 = 916, 088
pixel

2
where l denotes the screen length in pixels. The unused surface is: F = (l ×h)−S = 2, 073, 600

pixel
2 − 916, 088 pixel2 = 1, 157, 512 pixel2, which represents a portion of 56%.

5.2.6 Participants. Two independent groups of nineteen subjects each participated in this exper-

iment. All participants were regular smartphone users and they were recruited in our organization

through a mailing list. These thirty-eight subjects are all different from those who participated in

the exploratory study to avoid any carry-over effect. They were randomly selected from a list of

volunteers belonging to our organization, working in non-computer areas. No compensation was

offered.

5.2.7 Procedure. Before starting the test, the principle of each condition (C , L, and CM) was

explained to participants but prediction levels were not. Each participant trained with a pretest

composed of ten targets. A different item list was used in the pretest than the one used in the test.

Both groups selected 60 target items as follows:

(1) Group 1: 40 target items for Cloud Menu (20 with high prediction and 20 with low prediction)

= 20 items when prediction is correct (10 located in the center of the Cloud Menu and 10

when target is in the periphery) + 20 items when prediction is wrong (items are all outside

the Cloud Menu: 10 located on the first screen and 10 on the second screen). There were also

20 items for Control condition: 10 items located on the first screen and 10 on the second.

(2) Group 2: 40 targets for Linear Menu = 20 items when prediction is correct and 20 items

when prediction is wrong (target is outside the prediction window: 10 located on the first

screen and 10 on the second screen). Similarly to group 1, there were also 20 items for Control

condition: 10 items located on the first screen and 10 on the second screen.

In summary, the between-participant design was as follows: 19 participants × 2 groups × 60 targets

= 2,280 menu item selections in total.
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Row Group Menu Selection time (sec.) Error rate (%)
M SD W/Z M SD W/Z

1

G1 Control 3.40 1.07

0.93

.17 .29

0.22

G2 Control 3.04 1.07 .33 .62

2

G1 Cloud (P+) 1.76 0.61

3.08***

.95 1.20

1.47

G2 Linear (P+) 4.12 3.08 1.93 2.12

3

G1 Cloud (P+) 1.76 0.61

4.11***

.95 1.20

3.04**

G1 Control 3.40 1.07 .17 .29

4

G1 Cloud (P-) 5.60 1.65

3.08***

.74 1.74

1.47

G2 Linear (P-) 3.40 2.84 2.66 2.79

5

G1 Cloud (P-) 5.60 1.65

4.17***

.74 1.74

1.22

G1 Control 3.40 1.07 .17 .29

6

G2 Linear (P+) 4.12 3.08

2.04*

1.20 2.11

2.54*

G2 Control 3.04 1.07 .33 .62

7

G2 Linear (P-) 3.40 2.84

0.2

2.66 2.79

3.54**

G2 Control 3.04 1.07 .33 .62

Table 6. Experiment results: P+ =high prediction, P− =low prediction, No significance= p > .05, *= p ≤ .05,
**= p ≤ .01, ***= p ≤ .001.

5.2.8 Results and Discussion. Levene’s test [55] was applied to verify homogeneity of variance

between the two independent samples. Since this later was partially determined, non-parametric

Mann-Whitney Comparison test was used for analysis between independent samples (groups), and

Wilcoxon Signed Ranks test was applied in the case of within-subjects conditions (Table 6). Data

were submitted to a Bonferroni Type I correction before handling.

Selection time. Selection time for all conditions is reported in the third column of Table 6 and

graphically depicted in Fig. 15 with a 95% confidence interval for difference between normal means

(α = .05). First of all, according to row 1 in 6, there is no significant difference (Z = .93, p = .35)
in Control condition between group G1 who tested the cloud menu (M = 3.40, SD = 1.07) and
group G2 (M = 3.04, SD = 1.07), which allows us to properly compare these two independent

groups. According to row 3, Cloud condition with high prediction (P+ : M = 1.76, SD = 0.61)
is significantly faster (W22 = 4.11, p = .00004) than Control condition (M = 3.40, SD = 1.07).
Similarly, Cloud condition with high prediction (P+ : M = 1.76, SD = .61) is significantly faster

(Z = 3.08, p = .002) than Linear condition in both cases as indicated in row 2: when target is in the

center of the Cloud (M = 1.19, SD = .54) and when it is in the periphery (M = 2.35, SD = 1.04).
Interestingly, when target is located in the center of the Cloud, participants are also significantly

faster (W23 = 3.71, p = .0002) than when it is located in the periphery. Usually, corner locations are

faster to reach.

Row 6 suggests that Control condition (M = 3.04, SD = 1.07) is faster (W14 = 2.04, p = .05)
than Linear condition when prediction is high (P+ : M = 4.12, SD = 3.08). In addition in row

4, when prediction is low, users are significantly faster (Z = 3.08, p = .002) in Linear condition

(P− : M = 3.40, SD = 2.84) than in Cloud condition (P− : M = 5.60, SD = 1.65). In row 5, users are

also significantly faster (W22 = 4.17, p = .0003) in Control condition (M = 3.40, SD = 1.07) than
in Cloud condition with low prediction (P− : M = 5.60, SD = 1.65). More detailed results further

suggest that:
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Fig. 15. Selection time for all conditions (normal mean, error bars with a confidence interval of α = .05)

• Cloud with low prediction and target on first screen of the main list (P− : M = 4.98,
SD = 1.76) is significantly faster (W22 = 4.14, p = .00003) than Control with target on first

screen (M = 2.42, SD = .83).
• Cloud with low prediction and target on second screen of the main list (M = 6.24, SD = 1.63)
is significantly faster (W22 = 3.56, p = .0003) than Control with target on second screen

(M = 4.40, SD = 1.78).
• In Control condition, users are also significantly faster (W22 = 4.14, p = .00003) when the

target is on the first screen (M = 2.42, SD = .83) than when it is located on the second screen

(M = 4.40, SD = 1.78).

However, row 7 reveals that no significant difference (W14 = .20, p = .84) can be detected

between Control condition (M = 3.04, SD = 1.07) and Linear condition when prediction is low

(P− : M = 3.40, SD = 2.84). More detailed results further suggest the following absences of

significance:

(1) No significance (W14 = .91, p = .36) between Linear with low prediction and target on first

screen of the main list (P− : M = 3.55, SD = 3.42), Control with target on first screen

(M = 2.11, SD = .53).
(2) No significance (W14 = 1.14, p = .25) between Linear with low prediction and target on

second screen of the main list (M = 3.25, SD = 2.35) and Control with target on second

screen (M = 3.97, SD = .86).
(3) However, users belonging to the Control condition are significantly faster (W14 = 3.40,

p = .0006) when the target is in the first screen (M = 2.11, SD = .53) than when it is located

on the second screen (M = 3.97, SD = .86), which is of course normal since any navigation

to the second screen will inevitably increase the selection time.

Fig. 16 plots the average selection time of the Cloud menu as a function of the displacement

[65], calculated as the distance in pixels between the central point and the item selected with

interpolation. The dashed black line represents a trend line for the selection time, which seems

comparable to small radial menus (SPARSE in [71]) represented by a red dotted line in Fig. 16.

H11 is supported. When prediction is high, users find the target item among 6 predicted items

in the Cloud Menu and the Linear Menu faster than in Control condition when the target belongs

to a list of 16 items, which somewhat normal since item selection is operated with a smaller amount

of time included in a smaller surface, which is in line with [28].
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Fig. 16. Selection time as a function of displacement.

H21 is supported. When prediction is high, users are faster in Cloud menu than in Linear condition.

This result can be justified by the fact that circular form of the Cloud facilitates exploration of a

number of predicted items assigned to 6, which is higher than the typical 3 items found in other

adaptive split menus. The user attention is distributed to different sides of the Cloud in contrary to

the Linear condition when the user has to browse all items one by one. Consequently, by transitivity,

Cloud Menu is faster than Linear menu, which is in turn faster than Control condition, which is

the most important conclusion that demonstrates the effectiveness and efficiency of Cloud Menus.

H31 is supported. This is justified by the fact that user attention is often attracted by the item in

the center of the Cloud Menu because it is consistently located and it is always emphasized by

a larger font size compared to other predicted items in the Cloud. Therefore, the central item is

always the most preeminent among all menu items and its position is very predictable, even it

requires some scanning. Suggested conclusions are:

(1) Prediction is crucial, reduces navigation time, search time especially when menus are long.

(2) Increasing the amount of predicted items is not penalizing the interaction because it is still

better than the non-adaptive menu provided that this amount is not prohibitive. This requires

another study to determine the threshold for this positive effect.

(3) The prediction window as a circular word cloud may be an important factor making the Cloud

Menu efficient. It is better than the Linear Menu because of its impact on user perception

and usability of word clouds [42, 57].

(4) Linear menu is competitive to scan items (one eye fixation, one column), but becomes

surpassed by a cloud menu (many eye fixations, multiple directions) when the amount of

items increases the length of the split area.

H41 andH51 are partially supported. Results showed that, overall when prediction is low, Control
condition is faster than Cloud Menu and no significant difference is found between the Linear and

Control conditions. A cloud menu subsumes two costs: the visual search time of an item and the

checking time of an item. When prediction is high, the predicted item appears in the prediction

window, its visual searching time is limited by the amount of items and the surface and its checking

time is null. But when the prediction is low, the predicted item does not appear in the prediction

window. The end user then starts by scanning the area several times to ensure that the target item

is really not there: the checking time becomes superior to the visual searching time. Conversely

in a Linear menu, the checking time remains equal to zero because the end user ensures that all

items are processed when scanning items vertically. Conveying six predicted items increases the

probability to present the target item to the end user with respect to three predicted items only.

H61 is supported. Users can have direct access to target when this latter is on first screen contrary
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to when it is on the second screen, in this case scrolling is required that can justify the fact that

selection time is shorter on first screen than on second screen.

Error Rate. Error rate for all conditions is reported in the fourth large column of Table 6. Error

rates are assessed as equivalent (Z = .22, p = .82) in Control condition both in G1 (M = .17,
SD = .29) and G2 (M = .33, SD = .62) as reported in row 1 of Table 6. Overall, there is no significant

difference observed (Z = 1.47, p = .14) in terms of errors between the Cloud condition (M = .95,
SD = 1.20) and Linear condition (M = 1.93, SD = 2.12) as indicated in row 2. In Cloud Menu, when

prediction is high and item target is located in the center of the Cloud (P+ : M = .04, SD = .21),
errors are less frequent (W22 = 3.44, p = .0005) than when the target is located in the periphery

(M = 1.87, SD = 2.40). In row 3, we observe that errors are significantly less frequent (W22 = 3.04,
p = .002) in Control condition (M = .17, SD = .29) than in Cloud Menu (M = .96, SD = 1.20),
which may be due to tally errors in the periphery of the Cloud. When prediction is low in Cloud

Menu (P− : M = .74, SD = 1.74), there is no significant difference (W22 = 1.22, p = .22) with
respect to the Control condition (M = .17, SD = .29) as reported in row 5. Similarly, errors are less

frequent (W14 = 2.54, p = .01) in Control condition (M = .33, SD = .62) than in Linear condition

(M = 1.20, SD = 2.11) as reported in row 6 when prediction is high. When prediction is low in row

7, it is even more significant: errors are less frequent (W14 = 3.54, p = .007) in Control Condition

than in Linear case with low prediction.

H71 is supported. When target is one of the 6 predicted items in Cloud and Linear Menu, the

visual search time and selection time are reduced which reduce errors number.

H81 is supported. In the periphery, some items can be close together, which suggests that a large

number of tally errors can be generated. Contrarily to a target located in the center, locations,

directions, and font size are factors minimizing tally errors. Items predicted inside the cloud can be

laid out in a more optimized way by calculating the distance between items and the center, and

distributing them, e.g., by considering their semantic relation. Further investigation is required to

improve this aspect, by laying these items out depending on their position in the static menu.

H91 is supported. In the case of low prediction, participants did not rely on the Cloud Menu and

used the button to make it disappear. The target is in the static menu, like in Control condition,

which suggests that there is no difference between Cloud Menu and Control condition.

5.2.9 Experiment Overview. The experiment for the cloud menu corroborates several findings

from Lohmann et al. [57]:

• Item font size: items with a large font size attract more user attention than with a small

font size (an effect influenced by other parameters, such as item length, item position, and

item neighboring). According to this study, recognition for items with a larger font size was

significantly higher than items with a smaller font size: 83%, 73%, and 59% respectively for

the three largest. The item font size is the linear menu remained constant but could also

benefit from the same effect: to become a size-changing menu if the selection area changes.

• Scanning: cloud menus have been proved as an efficient adaptive split menu for small screens

because participants tend to scan menu items rather than reading them, which accelerates

their processing time.

• Centering: menu items located in the middle of the cloud attract more user attention than tags

near the borders (an effect influenced by layout). H31 and H81 are two supported hypotheses

that confirm this finding.

• Position: the upper left quadrant receives more user attention than the others, but we did not

exploit this effect since menu items are positioned so that they can point to their original

position in the static menu, even when they are off-screen.
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6 DESIGN GUIDELINES
6.1 Design Guidelines for Graphical Adaptive Menus
By combining results from the preference analyses and the controlled experiment, some design

guidelines could be devised on which form of graphical adaptivity could be preferred:

• (G1) Privilege spatial stability.When the amount of predicted items is low with respect

to displayed items, such as in a ratio of 3/7, the spatial stability should be first property to

be respected, which concur with [39]: the most preferred graphical adaptive menus emerg-

ing from the analyses all adhere to this property. They should be position-invariant and

orientation-invariant, which is also important for gestures [79]. Consequently, adaptivity

should be conveyed by format, preferably by changing the value, but not the color or the

texture. When the amount of predicted items increases, perhaps with the amount of items in

the static menu, it is no longer possible to rely on spatial stability only. The split menu with

replication comes as the first preferred option followed by cloud menus afterwards. The first

enlarges the menu size while the second does not.

• (G2) Maintain physical stability if possible. Among all menus satisfying spatial stability,

those also satisfying physical stability should be considered first. Graphical adaptive menus

satisfying both properties come before those which are size and/or shape variant. Size-

invariance also comes before shape-invariance.

• (G3) Foster value-changing menus. Among all properties involved in format stability,

the value variance is largely accepted in many forms, mainly because it does not affect

spatial and physical stabilities. Color-invariance and texture-invariance should be always

preserved: graphical adaptive menus not satisfying these properties were always ranked low

and assessed negatively.

• (G4) Relax temporal stability only if spatial stability is maintained. Motion-variant

menus are very much depreciated. The only cases were they were still appreciated were

when spatial stability is maintained. The ephemeral menu [34] is a representative example,

while twisting or rotating menus are not.

6.2 Design Guidelines for Cloud Menus
A cloud menu represents an adaptive split menu for which some design guidelines can be devised:

• (G5) A cloudmenu should be used for a substantive staticmenu. The main idea behind

using a tag cloud in information retrieval is that the relevance of a document must be

determinedwith respect to a set of documents before this document actually appears. Similarly,

the main idea behind using a tag cloud as an adaptive split menu is that the probability of

selecting a menu item among other items in that menu should appear before the menu is

entirely browsed and displayed. It does not make sense to produce an adaptive split menu

such as the cloud menu for an initial (static) menu containing only a few items, even on a

small screen. In our experiment, the half of the menu is visible: 8 items among 16.

• (G6) A cloudmenu should not holdmore than 6 items. So far, adaptive split menus have

been mainly explored for large screens (e.g., laptop, desktop, large monitors, wall screens).

Even under these conditions, 3 or 4 items were recommended [32, 34] as the maximum

threshold. The results of the experiment conducted suggest that this threshold could be

upgraded up to 6, even on a small screen.

• (G7) A cloudmenu should not exceed 3 levels of prediction. Beyond this threshold, the
end user is likely to be no longer able to make any difference between the three levels. This is

somewhat consistent with the 3 levels of emphasizing recommended in usability guidelines
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[60]. Other coding schemes could augment this representation, but may also increase the

cognitive load as opposed to reinforcing the same data.

• (G8) A cloudmenu should be located as close as possible to the static original menu.
When an adaptive split menu is located too far away from its original menu, there is a risk

of losing the semantic or physical relationship between the static and the predicted parts.

This is consistent with existing recommendation [71, 72] to minimize visual displacement

between the various regions.

• (G9) The items of a cloud menu should be located as much as possible to point to
their corresponding (static) items. When both are on the same display, they should be

positioned on the same line (plain red arrow in Fig. 13). When a predicted item refers to an

off-screen location, it should also be positioned to indicate this situation (dotted red arrow in

Fig. 13). This guideline is applicable to any adaptive split menu, especially for normal screens.

• (G10) A cloud menu on a small screen can be superimposed.While large screens can

accommodate another (close) location for displaying the prediction window, a small screen is

unable to satisfy the same constraint. Thus, a superposition avoids creating another parallel

menu like in the traditional split menu, with the risk of oscillating between the two. It also

preserves spatial, physical, and format stability (since the static menu is left untouched), but

not temporal stability.

• (G11) A cloud menu should optimize its circular layout. Since shape was elicited in the

focus group as the first variable to manipulate for materializing a cloud, other parameters, like

color, texture, animation should be left out. Instead, the circular layout could be optimized

based on [71], with only one item per line and only one background and foreground color.

We did not play with transparency like alpha blending.

7 CONCLUSION AND FUTUREWORK
In this article, we first reviewed a large set of graphical menus, some of them supporting adaptivity,

some other being candidates for expressing some adaptivity depending on how the menu items

change based on their prediction. Observing the wide and deep variety of these menus, a systematic

exploration of a design space, based on Bertin’s eight visual variables, was conducted to classify

these menu techniques against four stability properties. The exploration of this design space

allowed us to describe any graphical adaptive menu, to compare two or more of them, and to

generate unprecedented new ideas. An exploratory study was conducted to determine the end users’

preference for the eight visual variables based on menus prototyped based on Findlater’s menu.

The results of this exploratory study enabled us to focus on shape-changing and value-changing

menus, suggested as the most preferred visual styles.

Cloud menus, a particular type of shape-changing menu, was further investigated to determine

its impact of effectiveness, efficiency, and satisfaction. The Cloud Menu consists of a linear list

for the static menu superimposed by a prediction window materialized as a circular word cloud

with three prediction levels (Fig. 13): any item with high prediction (probability = 80%) is located

in the center of the cloud highlighted with large font size, any item with medium prediction

(60% ≤ probability ≤ 80%) is presented in the periphery with a decreasing size font and a larger

distance from the center depending on the probability (the lower the prediction, the more far and

the smaller the item becomes), and any item with low prediction (probability ≤ 60%) is displayed

only in the static menu. The empirical study conducted on cloud menus suggests that they reduce

item selection time and error rate when prediction is correct without penalizing it when prediction

is incorrect, compared to two baselines: a non-adaptive static menu and an adaptive linear menu.

These findings reinforce once again the need for an accurate prediction [39]. From this study, a set

of design guidelines for graphical adaptive menus and cloud menus are elaborated.
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Further work could be elaborated at different levels of investigation.

At the level of the cloud menu. Several variables have been frozen as constant to facilitate

the conducting of the controlled experiment. These variables be released to determine their effect

on selection time, error rate, and subjective user satisfaction. Regarding the prediction window, the

radius of the cloud menu, initially aligned with the screen length, could be reduced to minimize

occlusion; the amount of predicted items, between three and six, could be revisited in parallel with

the font size to determine when the amount of predicted items becomes too large to be effectively

perceived; more or less prediction levels could be tested; other shapes used for tag clouds could be

considered than a circle, although considered as the simplest one. The size of menu items is known

to determine some efects especially on small screens [2, 80]. Regarding the static part, the amount

of menu items per menu, initially set to sixteen (Fig. 10), could increase; the amount of groups of

related items, initially set to four, could also vary; the depth of the menu could range from one to

three or more, thus enabling a cloud menu to benefit from the step-by-step-menu [17].

At the level of graphical adaptive menus. Other forms of graphical adaptive menus revealed

in the preference analyses delivered in this paper suggest further investigation and comparison.

These experiments could also involve other measures, such as a menu performance model [28], the

Fitt’s Law or other models to predict the selection times. These models should cover the motor and

cognitive spaces of menu selection and rely on the various steps for adaptation found in adaptation

cycles such as in the ISATINE framework [58] or the LPA-PDA cycle [19]. Bertin’s classification of

visual variables has been revisited and extended by Carpendale [27]: grain is a new visual variable

where any color or value, except the extremes, can support variations in grain; pattern is another

variable expressing how repetitive use of shape variations may result into a patten; and a revisited

definition of texture, expressed as any material characteristic (e.g., steel, metal, wood). When visual

attributes are manipulated in an animation, new variables are analyzed, such as: display rate,

order, duration, frequency, rate of change, synchronization. These additional variables constitute a

interesting starting point for extending the design space of graphical adaptive menus. They were

not considered in this paper because the hypothesis was to stick to Bertin’s initial definitions as a

starting point.

At the level of multimodal adpative menus. All adaptivity forms discussed in this paper

assume that the graphical modality is predominant. Adaptivity could be conveyed by other means

than via the visual channel. Even if the vast majority of signals processed by our human brain

emanate from our visual channel, other channels could be investigated, such as tactile, touch,

haptics, sound [83], and sonification. Relying on channels that do not require any synchronization

with the visual channel, e.g., the haptic and the sound channels, avoid overwhelming the visual

channel, when a cognitive overload occurs. Alternate modalities are particularly welcome in eye-

free or hand-free conditions [67]. For instance, a haptic surface could be employed to let the end user

feel the prediction level or mid-air haptics could convey vibro-tactile feedback without touching

anything. Investigating these other modalities, such as in Polymodal menus [18], require identifying

and defining another set of variables relevant for each modality: e.g., intensity, timbre and register

for sound or swiftness for haptics. But so far, apart from the general multimodal interfaces offering

modalitiy alternatives to the end user [12, 31], multimodal adaptive menus are in their infancy [13].

ACKNOWLEDGMENTS
The authors would also like to warmly thank the anonymous referees for their valuable comments

and helpful suggestions. They also thank all the participants involved in the studies and experiments.

We also thank Mathieu Zen for implementing the A/B testing system used in the preference analysis.

Jean Vanderdonckt was supported by the Wallonie Bruxelles International (WBI) program.

ACM Trans. Interact. Intell. Syst., Vol. 9, No. 4, Article . Publication date: November 2019.



Exploring a Design Space of Graphical Adaptive Menus:
Normal vs. Small Screens :35

REFERENCES
[1] David Ahlström, Andy Cockburn, Carl Gutwin, and Pourang Irani. 2010. Why It’s Quick to Be Square: Modelling New

and Existing Hierarchical Menu Designs. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’10). ACM, New York, NY, USA, 1371–1380. https://doi.org/10.1145/1753326.1753534

[2] Khalid Al-Omar and Dimitrios Rigas. 2009. The Effect of Size of Personalised Menus on User Satisfaction. In Proceedings
of the 11th WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical
Engineering (MMACTEE’09).World Scientific and Engineering Academy and Society (WSEAS), Stevens Point,Wisconsin,

USA, 322–327. http://dl.acm.org/citation.cfm?id=1949006.1949062

[3] Liat Antwarg, Talia Lavie, Lior Rokach, Bracha Shapira, and Joachim Meyer. 2013. Highlighting items as means of

adaptive assistance. Behaviour & Information Technology 32, 8 (2013), 761–777. https://doi.org/10.1080/0144929X.2011.

650710 arXiv:https://doi.org/10.1080/0144929X.2011.650710

[4] Leena Arhippainen, Tapani Rantakokko, and Marika Tähti. 2005. Navigation with an Adaptive Mobile Map-Application:

User Experiences of Gesture- and Context-Sensitiveness. In Ubiquitous Computing Systems, Hitomi Murakami,

Hideyuki Nakashima, Hideyuki Tokuda, and Michiaki Yasumura (Eds.). Springer, Berlin, Heidelberg, 62–73. https:

//doi.org/10.1007/11526858_6

[5] Siddhartha Asthana, Pushpendra Singh, and Amarjeet Singh. 2013. Exploring Adverse Effects of Adaptive Voice Menu.

In CHI ’13 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’13). ACM, New York, NY, USA, 775–780.

https://doi.org/10.1145/2468356.2468494

[6] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2016. Visual Menu Techniques. Comput. Surveys 49, 4, Article 60
(Dec. 2016), 41 pages. https://doi.org/10.1145/3002171

[7] Gilles Bailly, Antti Oulasvirta, Timo Kötzing, and Sabrina Hoppe. 2013. MenuOptimizer: Interactive Optimization of

Menu Systems. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST ’13).
ACM, New York, NY, USA, 331–342. https://doi.org/10.1145/2501988.2502024

[8] Patrick Baudisch, Desney Tan, Maxime Collomb, Dan Robbins, Ken Hinckley, Ken Hinckley, Maneesh Agrawala,

Shengdong Zhao, and Gonzalo Ramos. 2006. Phosphor: Explaining Transitions in the User Interface Using Afterglow

Effects. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST ’06). ACM,

New York, NY, USA, 169–178. https://doi.org/10.1145/1166253.1166280

[9] Michel Beaudouin-Lafon. 2004. Designing Interaction, Not Interfaces. In Proceedings of the Working Conference on
Advanced Visual Interfaces (AVI ’04). ACM, New York, NY, USA, 15–22. https://doi.org/10.1145/989863.989865

[10] Benjamin B. Bederson. 2000. Fisheye Menus. In Proceedings of the 13th Annual ACM Symposium on User Interface
Software and Technology (UIST ’00). ACM, New York, NY, USA, 217–225. https://doi.org/10.1145/354401.354782

[11] Jacques Bertin. 1967. Sémiologie graphique. Mouton/Gauthier-Villars, Paris, France.

[12] Matthias Bezold and Wolfgang Minker. 2010. A Framework for Adapting Interactive Systems to User Behavior. J.
Ambient Intell. Smart Environ. 2, 4 (Dec. 2010), 369–387. http://dl.acm.org/citation.cfm?id=2021081.2021084

[13] Matthias Bezold and Wolfgan Minker. 2011. Adaptive Multimodal Interactive Systems. Springer, Berlin, Germany.

https://doi.org/10.1007/978-1-4419-9710-4

[14] François Bodart, Anne-Marie Hennebert, Jean-Marie Leheureux, Isabelle Provot, Jean Vanderdonckt, and Giovanni

Zucchinetti. 1996. Key Activities for a Development Methodology of Interactive Applications. Springer London, London,
109–134. https://doi.org/10.1007/978-1-4471-1001-9_7

[15] Sara Bouzit, Gaëlle Calvary, Denis Chêne, and Jean Vanderdonckt. 2016. Automated Evaluation of Menu by Guidelines

Review. In 13th International Conference on Human Computer Interaction, RoCHI 2016, Iasi, Romania, September 8-
9, 2016., Adrian Iftene and Jean Vanderdonckt (Eds.). Matrix Rom, 11–21. http://rochi.utcluj.ro/proceedings/en/

articles-RoCHI2016.php

[16] Sara Bouzit, Gaëlle Calvary, Denis Chêne, and Jean Vanderdonckt. 2016. A Comparison of Shortcut and Step-by-Step

Adaptive Menus for Smartphones. In HCI 2016 - Fusion! Proceedings of the 30th International BCS Human Computer
Interaction Conference, BCS HCI 2016, Bournemouth University, Poole, UK, 11-15 July 2016 (Workshops in Computing),
Shamal Faily, Nan Jiang, Huseyin Dogan, and Jacqui Taylor (Eds.). BCS. http://ewic.bcs.org/content/ConWebDoc/56904

[17] Sara Bouzit, Gaëlle Calvary, Denis Chêne, and Jean Vanderdonckt. 2016. A Design Space for Engineering Graphical

Adaptive Menus. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS
’16). ACM, New York, NY, USA, 239–244. https://doi.org/10.1145/2933242.2935874

[18] Sara Bouzit, Gaëlle Calvary, Denis Chêne, and Jean Vanderdonckt. 2017. Polymodal Menus: A Model-based Approach

for Designing Multimodal Adaptive Menus for Small Screens. Proc. ACM Hum.-Comput. Interact. 1, EICS, Article 15
(June 2017), 19 pages. https://doi.org/10.1145/3099585

[19] Sara Bouzit, Gaëlle Calvary, Joëlle Coutaz, Denis Chêne, Éric Petit, and Jean Vanderdonckt. 2017. The PDA-LPA design

space for user interface adaptation. In 11th International Conference on Research Challenges in Information Science, RCIS
2017, Brighton, United Kingdom, May 10-12, 2017, Saïd Assar, Oscar Pastor, and Haralambos Mouratidis (Eds.). IEEE,

353–364. https://doi.org/10.1109/RCIS.2017.7956559

ACM Trans. Interact. Intell. Syst., Vol. 9, No. 4, Article . Publication date: November 2019.

https://doi.org/10.1145/1753326.1753534
http://dl.acm.org/citation.cfm?id=1949006.1949062
https://doi.org/10.1080/0144929X.2011.650710
https://doi.org/10.1080/0144929X.2011.650710
http://arxiv.org/abs/https://doi.org/10.1080/0144929X.2011.650710
https://doi.org/10.1007/11526858_6
https://doi.org/10.1007/11526858_6
https://doi.org/10.1145/2468356.2468494
https://doi.org/10.1145/3002171
https://doi.org/10.1145/2501988.2502024
https://doi.org/10.1145/1166253.1166280
https://doi.org/10.1145/989863.989865
https://doi.org/10.1145/354401.354782
http://dl.acm.org/citation.cfm?id=2021081.2021084
https://doi.org/10.1007/978-1-4419-9710-4
https://doi.org/10.1007/978-1-4471-1001-9_7
http://rochi.utcluj.ro/proceedings/en/articles-RoCHI2016.php
http://rochi.utcluj.ro/proceedings/en/articles-RoCHI2016.php
http://ewic.bcs.org/content/ConWebDoc/56904
https://doi.org/10.1145/2933242.2935874
https://doi.org/10.1145/3099585
https://doi.org/10.1109/RCIS.2017.7956559


:36 J. Vanderdonckt et al.

[20] Sara Bouzit, Denis Chêne, and Gaëlle Calvary. 2014. From Appearing to Disappearing Ephemeral Adaptation for Small

Screens. In Proceedings of the 26th Australian Computer-Human Interaction Conference on Designing Futures: The Future
of Design (OzCHI ’14). ACM, New York, NY, USA, 41–48. https://doi.org/10.1145/2686612.2686619

[21] Sara Bouzit, Denis Chêne, and Gaëlle Calvary. 2015. Evanescent Adaptation on Small Screens. In Proceedings of the
Annual Meeting of the Australian Special Interest Group for Computer Human Interaction (OzCHI ’15). ACM, New York,

NY, USA, 62–68. https://doi.org/10.1145/2838739.2838749

[22] Ralph Allan Bradley and Milton E. Terry. 1952. Rank Analysis of Incomplete Block Designs: I. The Method of Paired

Comparisons. Biometrika 39, 3/4 (1952), 324–345. http://www.jstor.org/stable/2334029

[23] Robert Bridle and Eric McCreath. 2005. Predictive Menu Selection on a Mobile Phone. In Proceedings Workshop W7 on
mining spatio-temporal data (ECML/PKDD’2005). 327–329. https://cs.anu.edu.au/~Eric.McCreath/papers/mining05.pdf

[24] Robert Bridle and Eric McCreath. 2006. Inducing Shortcuts on a Mobile Phone Interface. In Proceedings of the
11th International Conference on Intelligent User Interfaces (IUI ’06). ACM, New York, NY, USA, 327–329. https:

//doi.org/10.1145/1111449.1111526

[25] Nicolas Burny, Suzanne Kieffer, Nathan Magrofuoco, Jorge Luis Perez Medina, Paolo Roselli, and Jean Vanderdonckt.

2018. Feedup, Feedback, and Feedforward in Curve Mid-Air 3D Gestures. In Proceedings of CHI ’18 Workshop on Mid-Air
Haptics for Control Interfaces, M. Giordano, O. Georgiou, B. Dzidek, L. Corenthy, Jin Ryong Kim, S. Subramanian, and

Stephen Brewster (Eds.). http://hdl.handle.net/2078.1/198679

[26] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouillon, and Jean Vanderdonckt. 2003.

A Unifying Reference Framework for multi-target user interfaces. Interacting with Computers 15, 3 (2003), 289–308.
https://doi.org/10.1016/S0953-5438(03)00010-9

[27] M. S. T. Carpendale. 2001. Considering Visual Variables as a Basis for Information Visualisation. University of Calgary,

Faculty of science, Calgary, Canada. https://doi.org/10.5072/PRISM/30495

[28] Andy Cockburn, Carl Gutwin, and Saul Greenberg. 2007. A Predictive Model of Menu Performance. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’07). ACM, New York, NY, USA, 627–636.

https://doi.org/10.1145/1240624.1240723

[29] Ph. Courcoux and M. Semenou. 1997. Preference data analysis using a paired comparison model. Food Quality and
Preference 8, 5 (1997), 353 – 358. https://doi.org/10.1016/S0950-3293(97)00004-9 Third Sensometrics Meeting.

[30] Charles-Eric Dessart, Vivian Genaro Motti, and Jean Vanderdonckt. 2012. Animated Transitions Between User Interface

Views. In Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI ’12). ACM, New York,

NY, USA, 341–348. https://doi.org/10.1145/2254556.2254623

[31] Bruno Dumas, María Solórzano, and Beat Signer. 2013. Design guidelines for adaptive multimodal mobile input

solutions. In 15th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI
’13, Munich, Germany, August 27 - 30, 2013, Michael Rohs, Albrecht Schmidt, Daniel Ashbrook, and Enrico Rukzio

(Eds.). ACM, 285–294. https://doi.org/10.1145/2493190.2493227

[32] Leah Findlater and Joanna McGrenere. 2004. A Comparison of Static, Adaptive, and Adaptable Menus. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’04). ACM, New York, NY, USA, 89–96.

https://doi.org/10.1145/985692.985704

[33] Leah Findlater and Joanna McGrenere. 2008. Impact of Screen Size on Performance, Awareness, and User Satisfaction

with Adaptive Graphical User Interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’08). ACM, New York, NY, USA, 1247–1256. https://doi.org/10.1145/1357054.1357249

[34] Leah Findlater, Karyn Moffatt, Joanna McGrenere, and Jessica Dawson. 2009. Ephemeral Adaptation: The Use of

Gradual Onset to Improve Menu Selection Performance. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’09). ACM, New York, NY, USA, 1655–1664. https://doi.org/10.1145/1518701.1518956

[35] Sebastian Fischer and Stephan Schwan. 2008. Adaptively shortened pull down menus: location knowledge and selection

efficiency. Behaviour & Information Technology 27, 5 (2008), 439–444. https://doi.org/10.1080/01449290701497095

arXiv:https://doi.org/10.1080/01449290701497095

[36] Jérémie Francone, Gilles Bailly, Eric Lecolinet, Nadine Mandran, and Laurence Nigay. 2010. Wavelet Menus on

Handheld Devices: Stacking Metaphor for Novice Mode and Eyes-free Selection for Expert Mode. In Proceedings
of the International Conference on Advanced Visual Interfaces (AVI ’10). ACM, New York, NY, USA, 173–180. https:

//doi.org/10.1145/1842993.1843025

[37] Yusuke Fukazawa, Mirai Hara, Masashi Onogi, and Hidetoshi Ueno. 2009. Automatic Mobile Menu Customization

Based on User Operation History. In Proceedings of the 11th International Conference on Human-Computer Interaction
with Mobile Devices and Services (MobileHCI ’09). ACM, New York, NY, USA, Article 50, 4 pages. https://doi.org/10.

1145/1613858.1613921

[38] Krzysztof Z. Gajos and Krysta Chauncey. 2017. The Influence of Personality Traits and Cognitive Load on the Use

of Adaptive User Interfaces. In Proceedings of the 22nd International Conference on Intelligent User Interfaces (IUI ’17).
ACM, New York, NY, USA, 301–306. https://doi.org/10.1145/3025171.3025192

ACM Trans. Interact. Intell. Syst., Vol. 9, No. 4, Article . Publication date: November 2019.

https://doi.org/10.1145/2686612.2686619
https://doi.org/10.1145/2838739.2838749
http://www.jstor.org/stable/2334029
https://cs.anu.edu.au/~Eric.McCreath/papers/mining05.pdf
https://doi.org/10.1145/1111449.1111526
https://doi.org/10.1145/1111449.1111526
http://hdl.handle.net/2078.1/198679
https://doi.org/10.1016/S0953-5438(03)00010-9
https://doi.org/10.5072/PRISM/30495
https://doi.org/10.1145/1240624.1240723
https://doi.org/10.1016/S0950-3293(97)00004-9
https://doi.org/10.1145/2254556.2254623
https://doi.org/10.1145/2493190.2493227
https://doi.org/10.1145/985692.985704
https://doi.org/10.1145/1357054.1357249
https://doi.org/10.1145/1518701.1518956
https://doi.org/10.1080/01449290701497095
http://arxiv.org/abs/https://doi.org/10.1080/01449290701497095
https://doi.org/10.1145/1842993.1843025
https://doi.org/10.1145/1842993.1843025
https://doi.org/10.1145/1613858.1613921
https://doi.org/10.1145/1613858.1613921
https://doi.org/10.1145/3025171.3025192


Exploring a Design Space of Graphical Adaptive Menus:
Normal vs. Small Screens :37

[39] Krzysztof Z. Gajos, Mary Czerwinski, Desney S. Tan, and Daniel S. Weld. 2006. Exploring the Design Space for Adaptive

Graphical User Interfaces. In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI ’06). ACM, New

York, NY, USA, 201–208. https://doi.org/10.1145/1133265.1133306

[40] Krzysztof Z. Gajos, Katherine Everitt, Desney S. Tan, Mary Czerwinski, and Daniel S. Weld. 2008. Predictability and

Accuracy in Adaptive User Interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’08). ACM, New York, NY, USA, 1271–1274. https://doi.org/10.1145/1357054.1357252

[41] Saul Greenberg and Ian H. Witten. 1985. Adaptive personalized interfaces - A question of viabil-

ity. Behaviour & Information Technology 4, 1 (1985), 31–45. https://doi.org/10.1080/01449298508901785

arXiv:https://doi.org/10.1080/01449298508901785

[42] Florian Heimerl, Steffen Lohmann, Simon Lange, and Thomas Ertl. 2014. Word Cloud Explorer: Text Analytics Based

on Word Clouds. In 47th Hawaii International Conference on System Sciences, HICSS 2014, Waikoloa, HI, USA, January
6-9, 2014. IEEE Computer Society, 1833–1842. https://doi.org/10.1109/HICSS.2014.231

[43] Tobias Hesselmann, Stefan Flöring, and Marwin Schmitt. 2009. Stacked Half-Pie Menus: Navigating Nested Menus on

Interactive Tabletops. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ITS ’09).
ACM, New York, NY, USA, 173–180. https://doi.org/10.1145/1731903.1731936

[44] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceeding of the CHI ’99 Conference on Human
Factors in Computing Systems: The CHI is the Limit, Pittsburgh, PA, USA, May 15-20, 1999., Marian G. Williams and

Mark W. Altom (Eds.). ACM, 159–166. https://doi.org/10.1145/302979.303030

[45] Sheng-Cheng Huang, I-Fan Chou, and Randolph G. Bias. 2006. Empirical Evaluation of a Popular Cellular Phone’s

Menu System: Theory Meets Practice. J. Usability Studies 1, 2 (Feb. 2006), 91–108. http://dl.acm.org/citation.cfm?id=

2835658.2835662

[46] Anthony Jameson, Silvia Gabrielli, and Antti Oulasvirta. 2009. Users’ Preferences Regarding Intelligent User Interfaces:

Differences Among Users and Changes over Time. In Proceedings of the 14th International Conference on Intelligent
User Interfaces (IUI ’09). ACM, New York, NY, USA, 497–498. https://doi.org/10.1145/1502650.1502734

[47] Iyad Khaddam, Sara Bouzit, Gaëlle Calvary, and Denis Chêne. 2016. MenuErgo: Computer-aided Design of Menus by

Automated Guideline Review. In Actes de la 28ième ConféRence Francophone sur l’Interaction Homme-Machine (IHM
’16). ACM, New York, NY, USA, 36–47. https://doi.org/10.1145/3004107.3004130

[48] Iyad Khaddam and Jean Vanderdonckt. 2011. Flippable User Interfaces for Internationalization. In Proceedings of the 3rd
ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS ’11). ACM, New York, NY, USA, 223–228.

https://doi.org/10.1145/1996461.1996524

[49] Kyungdoh Kim, Robert W. Proctor, and Gavriel Salvendy. 2009. Menu Design in Cell Phones: Use of 3D Menus. In

Proceedings of the 13th International Conference on Human-Computer Interaction. Part III: Ubiquitous and Intelligent
Interaction. Springer-Verlag, Berlin, Heidelberg, 48–57. https://doi.org/10.1007/978-3-642-02580-8_6

[50] Thomas Kühme, Uwe Malinowski, and James D. Foley. 1993. Facilitating interactive tool selection by adaptive

prompting. In Human-Computer Interaction, INTERACT ’93, IFIP TC13 International Conference on Human-Computer
Interaction, 24-29 April 1993, Amsterdam, The Netherlands, jointly organised with ACM Conference on Human Aspects in
Computing Systems CHI’93, Adjunct Proceedings, Stacey Ashlund, Kevin Mullet, Austin Henderson, Erik Hollnagel, and

Ted N. White (Eds.). ACM, 149–150. https://doi.org/10.1145/259964.260160

[51] John Lamping, Ramana Rao, and Peter Pirolli. 1995. A Focus+Context Technique Based on Hyperbolic Geometry for

Visualizing Large Hierarchies. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’95). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 401–408. https://doi.org/10.1145/223904.223956

[52] Talia Lavie and Joachim Meyer. 2010. Benefits and costs of adaptive user interfaces. International Journal of Human-
Computer Studies 68, 8 (2010), 508 – 524. https://doi.org/10.1016/j.ijhcs.2010.01.004

[53] Dong-Seok Lee and Wan Chul Yoon. 2004. Quantitative results assessing design issues of selection-supportive menus.

International Journal of Industrial Ergonomics 33, 1 (2004), 41 – 52. https://doi.org/10.1016/j.ergon.2003.07.004

[54] H. Lee, Y. Choi, and Y. Kim. 2011. An adaptive user interface based on Spatiotemporal Structure Learning. In 2011 IEEE
Consumer Communications and Networking Conference (CCNC). 923–927. https://doi.org/10.1109/CCNC.2011.5766642

[55] Howard Levene. 1960. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in
Honor of Harold Hotelling, Ingram Olkin and Harold Hotelling et al. (Eds.). Stanford University Press, Palo Alto, CA,

USA, 278–292.

[56] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of Psychology 22, 140 (1932), 55–.

http://psycnet.apa.org/record/1933-01885-001

[57] Steffen Lohmann, Jürgen Ziegler, and Lena Tetzlaff. 2009. Comparison of Tag Cloud Layouts: Task-Related Performance

and Visual Exploration. In Human-Computer Interaction – INTERACT 2009, Tom Gross, Jan Gulliksen, Paula Kotzé,

Lars Oestreicher, Philippe Palanque, Raquel Oliveira Prates, and Marco Winckler (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 392–404. https://doi.org/10.1007/978-3-642-03655-2_43

ACM Trans. Interact. Intell. Syst., Vol. 9, No. 4, Article . Publication date: November 2019.

https://doi.org/10.1145/1133265.1133306
https://doi.org/10.1145/1357054.1357252
https://doi.org/10.1080/01449298508901785
http://arxiv.org/abs/https://doi.org/10.1080/01449298508901785
https://doi.org/10.1109/HICSS.2014.231
https://doi.org/10.1145/1731903.1731936
https://doi.org/10.1145/302979.303030
http://dl.acm.org/citation.cfm?id=2835658.2835662
http://dl.acm.org/citation.cfm?id=2835658.2835662
https://doi.org/10.1145/1502650.1502734
https://doi.org/10.1145/3004107.3004130
https://doi.org/10.1145/1996461.1996524
https://doi.org/10.1007/978-3-642-02580-8_6
https://doi.org/10.1145/259964.260160
https://doi.org/10.1145/223904.223956
https://doi.org/10.1016/j.ijhcs.2010.01.004
https://doi.org/10.1016/j.ergon.2003.07.004
https://doi.org/10.1109/CCNC.2011.5766642
http://psycnet.apa.org/record/1933-01885-001
https://doi.org/10.1007/978-3-642-03655-2_43


:38 J. Vanderdonckt et al.

[58] Víctor López-Jaquero, Jean Vanderdonckt, Francisco Montero Simarro, and Pascual González. 2007. Towards an

Extended Model of User Interface Adaptation: The Isatine Framework. In Engineering Interactive Systems - EIS 2007
Joint Working Conferences, EHCI 2007, DSV-IS 2007, HCSE 2007, Salamanca, Spain, March 22-24, 2007. Selected Papers
(Lecture Notes in Computer Science), Jan Gulliksen, Morten Borup Harning, Philippe A. Palanque, Gerrit C. van der

Veer, and Janet Wesson (Eds.), Vol. 4940. Springer, 374–392. https://doi.org/10.1007/978-3-540-92698-6_23

[59] Xiaoyang Mao, Yuji Hatanaka, Atsumi Imamiya, Yuki Kato, and Kentaro Go. 2000. Visualizing Computational Wear

with Physical Wear. In Proceedings of the 6th ERCIM Workshop ”User Interfaces for All” (UI4All ’00), Pier-Luigi Emiliani

and Constantine Stephanidis (Eds.). CNR-IROE, Pisa, Italy, 12. http://ui4all.ics.forth.gr/UI4ALL-2000/files/Long_

papers/Mao.pdf

[60] C. Marshall, C. Nelson, andM.M. Gardiner. 1987. Robust tests for equality of variances. InApplying Cognitive Psychology
to User- Interface Design, Design guidelines (Ed.). Wiley & Sons Ltd, Chichester.

[61] Justin Matejka, Tovi Grossman, and George Fitzmaurice. 2013. Patina: Dynamic Heatmaps for Visualizing Application

Usage. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New York, NY,

USA, 3227–3236. https://doi.org/10.1145/2470654.2466442

[62] Mitsuhiro Matsumoto, Ryozo Kiyohara, Hidenori Fukui, Masayuki Numao, and Satoshi Kurihara. 2008. Proposition of

the context-aware interface for cellular phone operations. In 2008 5th International Conference on Networked Sensing
Systems. 233–233. https://doi.org/10.1109/INSS.2008.4610872

[63] J. Mitchell and B. Shneiderman. 1989. Dynamic Versus Static Menus: An Exploratory Comparison. SIGCHI Bull. 20, 4
(April 1989), 33–37. https://doi.org/10.1145/67243.67247

[64] Jakob Nielsen and Jonathan Levy. 1994. Measuring Usability: Preference vs. Performance. Commun. ACM 37, 4 (April

1994), 66–75. https://doi.org/10.1145/175276.175282

[65] Lauren Norrie and Roderick Murray-Smith. 2016. Investigating UI Displacements in an Adaptive Mobile Homescreen.

Int. J. Mob. Hum. Comput. Interact. 8, 3 (July 2016), 1–17. https://doi.org/10.4018/IJMHCI.2016070101.oa

[66] Jungchul Park, Sung H. Han, Yong S. Park, and Youngseok Cho. 2007. Usability of Adaptable and Adaptive Menus.

In Usability and Internationalization. HCI and Culture, Nuray Aykin (Ed.). Springer, Berlin, Heidelberg, 405–411.

https://doi.org/10.1007/978-3-540-73287-7_49

[67] Martin Pielot, Anastasia Kazakova, Tobias Hesselmann,Wilko Heuten, and Susanne Boll. 2012. PocketMenu: Non-visual

Menus for Touch Screen Devices. In Proceedings of the 14th International Conference on Human-computer Interaction
with Mobile Devices and Services (MobileHCI ’12). ACM, New York, NY, USA, 327–330. https://doi.org/10.1145/2371574.

2371624

[68] Antoine Ponsard, Kamyar Ardekani, Kailun Zhang, Frederic Ren, Matei Negulescu, and Joanna McGrenere. 2015.

Twist and Pulse: Ephemeral Adaptation to Improve Icon Selection on Smartphones. In Proceedings of the 41st Graphics
Interface Conference (GI ’15). Canadian Information Processing Society, Toronto, Ont., Canada, Canada, 219–222.

http://dl.acm.org/citation.cfm?id=2788890.2788929

[69] Dimitrios Raptis, Nikolaos Tselios, Jesper Kjeldskov, and Mikael B. Skov. 2013. Does Size Matter?: Investigating the

Impact of Mobile Phone Screen Size on Users’ Perceived Usability, Effectiveness and Efficiency.. In Proceedings of the
15th International Conference on Human-computer Interaction with Mobile Devices and Services (MobileHCI ’13). ACM,

New York, NY, USA, 127–136. https://doi.org/10.1145/2493190.2493204

[70] Anne Roudaut, Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2009. Leaf Menus: Linear Menus with Stroke Shortcuts

for Small Handheld Devices. In Human-Computer Interaction – INTERACT 2009, Tom Gross, Jan Gulliksen, Paula Kotzé,

Lars Oestreicher, Philippe Palanque, Raquel Oliveira Prates, and Marco Winckler (Eds.). Springer, Berlin, Heidelberg,

616–619. https://doi.org/10.1007/978-3-642-03655-2_69

[71] Krystian Samp and Stefan Decker. 2011. Visual Search in Radial Menus. In Human-Computer Interaction – INTERACT
2011, Pedro Campos, Nicholas Graham, Joaquim Jorge, Nuno Nunes, Philippe Palanque, and Marco Winckler (Eds.).

Springer, Berlin, Heidelberg, 248–255. https://doi.org/10.1007/978-3-642-23768-3_21

[72] Andrew Sears and Ben Shneiderman. 1994. Split Menus: Effectively Using Selection Frequency to Organize Menus.

ACM Trans. Comput.-Hum. Interact. 1, 1 (March 1994), 27–51. https://doi.org/10.1145/174630.174632

[73] Choonsung Shin, Jin-Hyuk Hong, and Anind K. Dey. 2012. Understanding and Prediction of Mobile Application Usage

for Smart Phones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp ’12). ACM, New York,

NY, USA, 173–182. https://doi.org/10.1145/2370216.2370243

[74] Benjamin L. Somberg. 1987. A Comparison of Rule-based and Positionally Constant Arrangements of Computer Menu

Items. In Proceedings of the SIGCHI/GI Conference on Human Factors in Computing Systems and Graphics Interface (CHI
’87). ACM, New York, NY, USA, 255–260. https://doi.org/10.1145/29933.275639

[75] Erum Tanvir, Jonathan Cullen, Pourang Irani, and Andy Cockburn. 2008. AAMU: Adaptive Activation Area Menus for

Improving Selection in Cascading Pull-down Menus. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’08). ACM, New York, NY, USA, 1381–1384. https://doi.org/10.1145/1357054.1357270

ACM Trans. Interact. Intell. Syst., Vol. 9, No. 4, Article . Publication date: November 2019.

https://doi.org/10.1007/978-3-540-92698-6_23
http://ui4all.ics.forth.gr/UI4ALL-2000/files/Long_papers/Mao.pdf
http://ui4all.ics.forth.gr/UI4ALL-2000/files/Long_papers/Mao.pdf
https://doi.org/10.1145/2470654.2466442
https://doi.org/10.1109/INSS.2008.4610872
https://doi.org/10.1145/67243.67247
https://doi.org/10.1145/175276.175282
https://doi.org/10.4018/IJMHCI.2016070101.oa
https://doi.org/10.1007/978-3-540-73287-7_49
https://doi.org/10.1145/2371574.2371624
https://doi.org/10.1145/2371574.2371624
http://dl.acm.org/citation.cfm?id=2788890.2788929
https://doi.org/10.1145/2493190.2493204
https://doi.org/10.1007/978-3-642-03655-2_69
https://doi.org/10.1007/978-3-642-23768-3_21
https://doi.org/10.1145/174630.174632
https://doi.org/10.1145/2370216.2370243
https://doi.org/10.1145/29933.275639
https://doi.org/10.1145/1357054.1357270


Exploring a Design Space of Graphical Adaptive Menus:
Normal vs. Small Screens :39

[76] Theophanis Tsandilas and m. c. schraefel. 2005. An Empirical Assessment of Adaptation Techniques. In CHI ’05
Extended Abstracts on Human Factors in Computing Systems (CHI EA ’05). ACM, New York, NY, USA, 2009–2012.

https://doi.org/10.1145/1056808.1057079

[77] Jean Vanderdonckt. 1999. Computer-Aided Design of Menu Bar and Pull-Down Menus for Business Oriented

Applications. In Design, Specification and Verification of Interactive Systems’99, Proceedings of the Eurographics
Workshop in Braga, Portugal, June 2-4, 1999, David J. Duke and Angel R. Puerta (Eds.). Springer, 84–99. https:

//doi.org/10.1007/978-3-7091-6815-8_7

[78] Jean Vanderdonckt, Sara Bouzit, Gaëlle Calvary, and Denis Chêne. 2018. Cloud Menus: A Circular Adaptive Menu

for Small Screens. In 23rd International Conference on Intelligent User Interfaces (IUI ’18). ACM, New York, NY, USA,

317–328. https://doi.org/10.1145/3172944.3172975

[79] Jean Vanderdonckt, Paolo Roselli, and Jorge Luis Pérez Medina. 2018. !FTL, an Articulation-Invariant Stroke Gesture

Recognizer with Controllable Position, Scale, and Rotation Invariances. In 20th International Conference on Multimodal
Interaction, ICMI 2018, Boulder, CO, USA, October 16-20, 2018. 353–364. https://doi.org/10.1145/3242969.3243032

[80] Shelly Welch and Si-Jung Kim. 2013. Determining the Effect of Menu Element Size on Usability of Mobile Applications.

In Design, User Experience, and Usability. Web, Mobile, and Product Design, Aaron Marcus (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 740–749.

[81] Janet L. Wesson, Akash Singh, and Bradley van Tonder. 2010. Can Adaptive Interfaces Improve the Usability of Mobile

Applications?. In Human-Computer Interaction, Peter Forbrig, Fabio Paternó, and Annelise Mark Pejtersen (Eds.).

Springer, Berlin, 187–198. https://doi.org//10.1007/978-3-642-15231-3_19

[82] Michelle Wiebe, Denise Y. Geiskkovitch, and Andrea Bunt. 2016. Exploring User Attitudes Towards Different Ap-

proaches to Command Recommendation in Feature-Rich Software. In Proceedings of the 21st International Conference
on Intelligent User Interfaces (IUI ’16). ACM, New York, NY, USA, 43–47. https://doi.org/10.1145/2856767.2856814

[83] Pavani Yalla and Bruce N. Walker. 2008. Advanced Auditory Menus: Design and Evaluation of Auditory Scroll Bars. In

Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility (Assets ’08). ACM,

New York, NY, USA, 105–112. https://doi.org/10.1145/1414471.1414492

Received May 4, 2018; revised August 18, 2018; accepted October 14, 2018

ACM Trans. Interact. Intell. Syst., Vol. 9, No. 4, Article . Publication date: November 2019.

https://doi.org/10.1145/1056808.1057079
https://doi.org/10.1007/978-3-7091-6815-8_7
https://doi.org/10.1007/978-3-7091-6815-8_7
https://doi.org/10.1145/3172944.3172975
https://doi.org/10.1145/3242969.3243032
https://doi.org//10.1007/978-3-642-15231-3_19
https://doi.org/10.1145/2856767.2856814
https://doi.org/10.1145/1414471.1414492

	Abstract
	1 Introduction
	2 Related Work
	3 Design Space for Graphical Adaptive Menus
	3.1 Position-Changing Menus
	3.2 Orientation-Changing Menus
	3.3 Size-Changing Menus
	3.4 Shape-Changing Menus
	3.5 Value-Changing Menus
	3.6 Color-Changing Menus
	3.7 Texture-Changing Menus
	3.8 Motion-Changing Menus

	4 Preference Analysis
	4.1 Method
	4.2 Results and Discussion

	5 User Studies
	5.1 Exploratory Study
	5.2 Controlled Experiment

	6 Design Guidelines
	6.1 Design Guidelines for Graphical Adaptive Menus
	6.2 Design Guidelines for Cloud Menus

	7 Conclusion and Future Work
	Acknowledgments
	References

