User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

Sprouted Grains: A Comprehensive Review

  • Open access
  • PDF
  • 369.30 K
  1. AACC International Board 2008
  2. , Scientific Opinion on the risk posed by Shiga toxin-producingEscherichia coli(STEC) and other pathogenic bacteria in seeds and sprouted seeds : STEC and other pathogenic bacteria in seeds and sprouted seeds, 10.2903/j.efsa.2011.2424
  3. (2016)
  4. Mir Shabir Ahmad, Shah Manzoor Ahmad, Mir Mohammad Maqbool, Microgreens: Production, shelf life, and bioactive components, 10.1080/10408398.2016.1144557
  5. Microgreens: A New Specialty Crop’, HS1164. 2010 Florida: Institute of Food and Agricultural Sciences, University of Florida
  6. Pant, Ann. Plant Sci., 2, 49 (2013)
  7. Singh, Int. J. Pharm. Sci. Drug Res., 4, 10 (2012)
  8. Chomchan, Funct. Foods Health Dis., 7, 195 (21017)
  9. Lahouar Lamia, El-Bok Safia, Achour Lotfi, Therapeutic Potential of Young Green Barley Leaves in Prevention and Treatment of Chronic Diseases: An Overview, 10.1142/s0192415x15500743
  10. Definition and Classification of Commodities (Draft): Cereals and Cereal Products
  11. Nelson Kristina, Stojanovska Lily, Vasiljevic Todor, Mathai Michael, Germinated grains: a superior whole grain functional food?, 10.1139/cjpp-2012-0351
  12. Delian, Sci. Pap. Ser. B Hortic., 59, 447 (2015)
  13. Kyriacou Marios C., Rouphael Youssef, Di Gioia Francesco, Kyratzis Angelos, Serio Francesco, Renna Massimiliano, De Pascale Stefania, Santamaria Pietro, Micro-scale vegetable production and the rise of microgreens, 10.1016/j.tifs.2016.09.005
  14. Lorenz Klaus, D'Appolonia Bert, Cereal sprouts: Composition, nutritive value, food applications, 10.1080/10408398009527295
  15. Hübner Florian, Arendt Elke K., Germination of Cereal Grains as a Way to Improve the Nutritional Value: A Review, 10.1080/10408398.2011.562060
  16. Falcinelli Beatrice, Calzuola Isabella, Gigliarelli Lilia, Torricelli Renzo, Polegri Livia, Vizioli Vincenzo, Benincasa Paolo, Marsili Valeria, Phenolic content and antioxidant activity of wholegrain breads from modern and old wheat (Triticum aestivum L.) cultivars and ancestors enriched with wheat sprout powder, 10.4081/ija.2018.1220
  17. Marti Alessandra, Cardone Gaetano, Pagani Maria Ambrogina, Casiraghi Maria Cristina, Flour from sprouted wheat as a new ingredient in bread-making, 10.1016/j.lwt.2017.10.052
  18. Shingare Shyamala P., Thorat Bhaskar N., Fluidized Bed Drying of Sprouted Wheat(Triticum aestivum), 10.1515/ijfe-2012-0097
  19. Sharma Monika, Mridula D., Gupta R. K., Development of sprouted wheat based probiotic beverage, 10.1007/s13197-013-0959-1
  20. Padalia, Chron. Young Sci., 1, 23 (2010)
  21. Dal Bosco A., Castellini C., Martino M., Mattioli S., Marconi O., Sileoni V., Ruggeri S., Tei F., Benincasa P., The effect of dietary alfalfa and flax sprouts on rabbit meat antioxidant content, lipid oxidation and fatty acid composition, 10.1016/j.meatsci.2015.03.021
  22. Mattioli S., Dal Bosco A., Martino M., Ruggeri S., Marconi O., Sileoni V., Falcinelli B., Castellini C., Benincasa P., Alfalfa and flax sprouts supplementation enriches the content of bioactive compounds and lowers the cholesterol in hen egg, 10.1016/j.jff.2016.02.007
  23. Bewley J. D., Seed Germination and Dormancy., 10.1105/tpc.9.7.1055
  24. Logan David C., Millar A. Harvey, Sweetlove Lee J., Hill Steven A., Leaver Christopher J., Mitochondrial Biogenesis during Germination in Maize Embryos, 10.1104/pp.125.2.662
  25. Dziki Dariusz, Gawlik-Dziki Urszula, Kordowska-Wiater Monika, Domań-Pytka Monika, Influence of Elicitation and Germination Conditions on Biological Activity of Wheat Sprouts, 10.1155/2015/649709
  26. Di Gioia, 403 (2017)
  27. Gan, 191 (2019)
  28. Aoki Naohiro, Scofield Graham N., Wang Xin-Ding, Offler Christina E., Patrick John W., Furbank Robert T., Pathway of Sugar Transport in Germinating Wheat Seeds, 10.1104/pp.106.082719
  29. Gujjaiah, Int. J. Agric. Sci. Res., 3, 55 (2013)
  30. Chung Hyun-Jung, Cho Dong-Wha, Park Jong-Dae, Kweon Dong-Keon, Lim Seung-Taik, In vitro starch digestibility and pasting properties of germinated brown rice after hydrothermal treatments, 10.1016/j.jcs.2012.03.010
  31. You Su-Yeon, Oh Sea-Gwan, Han Hye Min, Jun Wujin, Hong Young-Shick, Chung Hyun-Jung, Impact of germination on the structures and in vitro digestibility of starch from waxy brown rice, 10.1016/j.ijbiomac.2015.11.023
  32. Agu R. C., Chiba Y., Goodfellow V., MacKinlay J., Brosnan J. M., Bringhurst T. A., Jack F. R., Harrison B., Pearson S. Y., Bryce J. H., Effect of Germination Temperatures on Proteolysis of the Gluten-Free Grains Rice and Buckwheat during Malting and Mashing, 10.1021/jf3028039
  33. Chiba Y., Bryce J. H., Goodfellow V., MacKinlay J., Agu R. C., Brosnan J. M., Bringhurst T. A., Harrison B., Effect of Germination Temperatures on Proteolysis of the Gluten-Free Grains Sorghum and Millet during Malting and Mashing, 10.1021/jf300965b
  34. Scofield G. N., Aoki N., Hirose T., Takano M., Jenkins C. L. D., Furbank R. T., The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants, 10.1093/jxb/erl217
  35. NODA T, TAKIGAWA S, MATSUURAENDO C, SAITO K, TAKATA K, TABIKI T, WICKRAMASINGHE H, YAMAUCHI H, The physicochemical properties of partially digested starch from sprouted wheat grain, 10.1016/j.carbpol.2003.10.015
  36. Jamar, Biotechnol. Agron. Soc. Environ., 15, 301 (2011)
  37. Hübner Florian, O’Neil Tonya, Cashman Kevin D., Arendt Elke K., The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley, 10.1007/s00217-010-1247-1
  38. Lemmens Elien, Moroni Alice V., Pagand Jennifer, Heirbaut Pieter, Ritala Anneli, Karlen Yann, Lê Kim‐Anne, den Broeck Hetty C., Brouns Fred J.P.H., Brier Niels, Delcour Jan A., Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review, 10.1111/1541-4337.12414
  39. Koehler Peter, Hartmann Georg, Wieser Herbert, Rychlik Michael, Changes of Folates, Dietary Fiber, and Proteins in Wheat As Affected by Germination, 10.1021/jf0633037
  40. Hung Pham Van, Maeda Tomoko, Yamamoto Syota, Morita Naofumi, Effects of germination on nutritional composition of waxy wheat, 10.1002/jsfa.4628
  41. Teixeira Cristina, Nyman Margareta, Andersson Roger, Alminger Marie, Effects of variety and steeping conditions on some barley components associated with colonic health : Barley malt composition under different steeping conditions, 10.1002/jsfa.7923
  42. Lee, Food Sci. Biotechnol., 16, 1006 (2007)
  43. Ohtsubo Ken’ichi, Suzuki Keitaro, Yasui Yuji, Kasumi Takafumi, Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder, 10.1016/j.jfca.2004.10.003
  44. Donkor O.N., Stojanovska L., Ginn P., Ashton J., Vasiljevic T., Germinated grains – Sources of bioactive compounds, 10.1016/j.foodchem.2012.05.058
  45. Han Jee-Yup, Structural characteristics of arabinoxylan in barley, malt, and beer, 10.1016/s0308-8146(00)00075-3
  46. LI Y, LU J, GU G, SHI Z, MAO Z, Studies on water-extractable arabinoxylans during malting and brewing, 10.1016/j.foodchem.2004.08.040
  47. De Backer Evelien, Gebruers Kurt, Van den Ende Wim, Courtin Christophe M., Delcour Jan A., Post-translational processing of β-d-xylanases and changes in extractability of arabinoxylans during wheat germination, 10.1016/j.plaphy.2009.10.008
  48. TAYLOR JOHN R. N., NOVELLIE LAWRENCE, LIEBENBERG NICOLAAS V.D. W., Protein Body Degradation in the Starchy Endosperm of Germinating Sorghum, 10.1093/jxb/36.8.1287
  49. Youssef, Sci. J. Crop Sci., 2, 8 (2013)
  50. Moongngarm Anuchita, Saetung Nattawat, Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice, 10.1016/j.foodchem.2010.03.053
  51. Tian Binqiang, Xie Bijun, Shi John, Wu Jia, Cai Yan, Xu Tuoming, Xue Sophia, Deng Qianchun, Physicochemical changes of oat seeds during germination, 10.1016/j.foodchem.2009.08.035
  52. Singkhornart Sasathorn, Ryu Gi-Hyung, Effect of Soaking Time and Steeping Temperature on Biochemical Properties and γ-Aminobutyric Acid (GABA) Content of Germinated Wheat and Barley, 10.3746/jfn.2011.16.1.067
  53. Rusydi, Int. Food Res. J., 18, 705 (2011)
  54. KAUKOVIRTA-NORJA A., WIHELMSON A., POUTANEN K., Germination: a means to improve the functionality of oat, 10.2137/1239099041838049
  55. Cho Dong-Hwa, Lim Seung-Taik, Germinated brown rice and its bio-functional compounds, 10.1016/j.foodchem.2015.09.025
  56. Chung Hyun-Jung, Jang Su-Hae, Cho Hong Yon, Lim Seung-Taik, Effects of steeping and anaerobic treatment on GABA (γ-aminobutyric acid) content in germinated waxy hull-less barley, 10.1016/j.lwt.2009.04.007
  57. Yao, Sci. Agric. Sin., 41, 3974 (2008)
  58. Roohinejad Shahin, Omidizadeh Alireza, Mirhosseini Hamed, Saari Nazamid, Mustafa Shuhaimi, Meor Hussin Anis Shobirin, Hamid Azizah, Abd Manap Mohd Yazid, Effect of Pre-Germination Time on Amino Acid Profile and Gamma Amino Butyric Acid (GABA) Contents in Different Varieties of Malaysian Brown Rice, 10.1080/10942911003687207
  59. Cornejo Fabiola, Caceres Patricio J., Martínez-Villaluenga Cristina, Rosell Cristina M., Frias Juana, Effects of germination on the nutritive value and bioactive compounds of brown rice breads, 10.1016/j.foodchem.2014.10.037
  60. Oh Suk-Heung, Stimulation of γ-Aminobutyric Acid Synthesis Activity in Brown Rice by a Chitosan/Glutamic Acid Germination Solution and Calcium/Calmodulin, 10.5483/bmbrep.2003.36.3.319
  61. Graham Ian A., Seed Storage Oil Mobilization, 10.1146/annurev.arplant.59.032607.092938
  62. Leonova Svetlana, Grimberg Åsa, Marttila Salla, Stymne Sten, Carlsson Anders S., Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil, 10.1093/jxb/erq141
  63. Ozturk I., Sagdic O., Hayta M., Yetim H., Alteration in α-tocopherol, some minerals, and fatty acid contents of wheat through sprouting, 10.1007/s10600-012-0092-9
  64. Márton, Acta Universitatis Sapientiae Alimentaria, 3, 53 (2010)
  65. Kiing Sie-Cheong, Yiu Pang-Hung, Rajan Amartalingam, Wong Sie-Chuong, Effect of Germination on γ-Oryzanol Content of Selected Sarawak Rice Cultivars, 10.3844/ajassp.2009.1658.1661
  66. Kim Hyun Young, Hwang In Guk, Kim Tae Myoung, Woo Koan Sik, Park Dong Sik, Kim Jae Hyun, Kim Dae Joong, Lee Junsoo, Lee Youn Ri, Jeong Heon Sang, Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination, 10.1016/j.foodchem.2012.02.138
  67. Miller Andreas, Engel Karl-Heinz, Content of γ-Oryzanol and Composition of Steryl Ferulates in Brown Rice (Oryza sativaL.) of European Origin, 10.1021/jf061688n
  68. Kumar Vikas, Sinha Amit K., Makkar Harinder P.S., Becker Klaus, Dietary roles of phytate and phytase in human nutrition: A review, 10.1016/j.foodchem.2009.11.052
  69. Azeke Marshall Arebojie, Egielewa Samuel Jacob, Eigbogbo Mary Ugunushe, Ihimire Inegbenose Godwin, Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum), 10.1007/s13197-010-0186-y
  70. Sung H.G., Shin H.T., Ha J.K., Lai H.-L., Cheng K.-J., Lee J.H., Effect of germination temperature on characteristics of phytase production from barley, 10.1016/j.biortech.2004.10.010
  71. Liang Jianfen, Han Bei-Zhong, Han Longzhi, Nout MJ Robert, Hamer Robert J, Iron, zinc and phytic acid content of selected rice varieties from China, 10.1002/jsfa.2747
  72. Mahgoub Salah E.O, Elhag Safia A, Effect of milling, soaking, malting, heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars, 10.1016/s0308-8146(97)00109-x
  73. Suma P. Florence, Urooj Asna, Influence of germination on bioaccessible iron and calcium in pearl millet (Pennisetum typhoideum), 10.1007/s13197-011-0585-8
  74. Sokrab Awad M., Mohamed Ahmed Isam A., Babiker Elfadil E., Effect of germination on antinutritional factors, total, and extractable minerals of high and low phytate corn (Zea mays L.) genotypes, 10.1016/j.jssas.2012.02.002
  75. Plaza Lucia, de Ancos Begoña, Cano Pilar M., Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum.L) and alfalfa (Medicago sativa) treated by a new drying method, 10.1007/s00217-002-0640-9
  76. Mbithi-Mwikya S., Van Camp J., Yiru Y., Huyghebaert A., Nutrient and Antinutrient Changes in Finger Millet (Eleusine coracan) During Sprouting, 10.1006/fstl.1999.0605
  77. Bailly Christophe, Active oxygen species and antioxidants in seed biology, 10.1079/ssr2004159
  78. Engert, J. Appl. Bot. Food Qual., 84, 111 (2011)
  79. Alvarez-Jubete L., Wijngaard H., Arendt E.K., Gallagher E., Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking, 10.1016/j.foodchem.2009.07.032
  80. Pal Priyanka, Singh Narpinder, Kaur Parmeet, Kaur Amritpal, Virdi Amardeep Singh, Parmar Naincy, Comparison of Composition, Protein, Pasting, and Phenolic Compounds of Brown Rice and Germinated Brown Rice from Different Cultivars, 10.1094/cchem-03-16-0066-r
  81. Hung Pham Van, Hatcher David W., Barker Wendy, Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities, 10.1016/j.foodchem.2010.12.015
  82. Benincasa Paolo, Galieni Angelica, Manetta Anna Chiara, Pace Roberta, Guiducci Marcello, Pisante Michele, Stagnari Fabio, Phenolic compounds in grains, sprouts and wheatgrass of hulled and non-hulled wheat species : Phenolic compounds in wheat, 10.1002/jsfa.6877
  83. Ohm Jae-Bom, Lee Chiwon W., Cho Kyongshin, Germinated Wheat: Phytochemical Composition and Mixing Characteristics, 10.1094/cchem-01-16-0006-r
  84. Ralph John, Hatfield Ronald D., Quideau Stephane, Helm Richard F., Grabber John H., Jung Hans-Joachim G., Pathway of p-Coumaric Acid Incorporation into Maize Lignin As Revealed by NMR, 10.1021/ja00100a006
  85. Ti Huihui, Zhang Ruifen, Zhang Mingwei, Li Qing, Wei Zhencheng, Zhang Yan, Tang Xiaojun, Deng Yuanyuan, Liu Lei, Ma Yongxuan, Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages, 10.1016/j.foodchem.2014.04.024
  86. Žilić Slađana, Basić Zorica, Hadži-Tašković Šukalović Vesna, Maksimović Vuk, Janković Marijana, Filipović Milomir, Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour?, 10.1111/ijfs.12397
  87. Pongrac Paula, Potisek Mateja, Fraś Anna, Likar Matevž, Budič Bojan, Myszka Kinga, Boros Danuta, Nečemer Marijan, Kelemen Mitja, Vavpetič Primož, Pelicon Primož, Vogel-Mikuš Katarina, Regvar Marjana, Kreft Ivan, Composition of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural mineral-rich water, 10.1016/j.jcs.2016.02.002
  88. Yang, T.K. Basu, B. Ooraikul F., Studies on germination conditions and antioxidant contents of wheat grain, 10.1080/09637480120057567
  89. Goupy Pascale, Hugues Mireille, Boivin Patrick, Amiot Marie Jos�phe, Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds, 10.1002/(sici)1097-0010(199909)79:12<1625::aid-jsfa411>;2-8
  90. Danisova, Acta Aliment., 23, 287 (1994)
  91. Sompong R., Siebenhandl-Ehn S., Linsberger-Martin G., Berghofer E., Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka, 10.1016/j.foodchem.2010.05.115
  92. Saleh Ahmed S.M., Zhang Qing, Chen Jing, Shen Qun, Millet Grains: Nutritional Quality, Processing, and Potential Health Benefits : Millet grains…, 10.1111/1541-4337.12012
  93. Shewry Peter R., Hey Sandra, Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components?, 10.1016/j.jcs.2015.07.014
  94. Tadesse W., Ogbonnaya F. C., Jighly A., Sanchez-Garcia M., Sohail Q., Rajaram S., Baum M., Genome-Wide Association Mapping of Yield and Grain Quality Traits in Winter Wheat Genotypes, 10.1371/journal.pone.0141339
  95. Yilmaz Volkan A., Brandolini Andrea, Hidalgo Alyssa, Phenolic acids and antioxidant activity of wild, feral and domesticated diploid wheats, 10.1016/j.jcs.2015.05.005
  96. Kissing Kucek Lisa, Dyck Elizabeth, Russell June, Clark Liz, Hamelman Jeffrey, Burns-Leader Sharon, Senders Stefan, Jones Jenny, Benscher David, Davis Michael, Roth Greg, Zwinger Steve, Sorrells Mark E., Dawson J.C., Evaluation of wheat and emmer varieties for artisanal baking, pasta making, and sensory quality, 10.1016/j.jcs.2016.12.010
  97. Caselato-Sousa Valéria Maria, Amaya-Farfán Jaime, State of Knowledge on Amaranth Grain: A Comprehensive Review, 10.1111/j.1750-3841.2012.02645.x
  98. Dziadek Kinga, Kopeć Aneta, Pastucha Edyta, Piątkowska Ewa, Leszczyńska Teresa, Pisulewska Elżbieta, Witkowicz Robert, Francik Renata, Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls, 10.1016/j.jcs.2016.02.004
  99. Bellato Silvia, Ciccoritti Roberto, Del Frate Viviana, Sgrulletta Daniela, Carbone Katya, Influence of genotype and environment on the content of 5-n alkylresorcinols, total phenols and on the antiradical activity of whole durum wheat grains, 10.1016/j.jcs.2012.11.003
  100. Shewry Peter R., Piironen Vieno, Lampi Anna-Maija, Edelmann Minnamari, Kariluoto Susanna, Nurmi Tanja, Fernandez-Orozco Rebeca, Ravel Catherine, Charmet Gilles, Andersson Annica A. M., Åman Per, Boros Danuta, Gebruers Kurt, Dornez Emmie, Courtin Christophe M., Delcour Jan A., Rakszegi Mariann, Bedo Zoltan, Ward Jane L., The HEALTHGRAIN Wheat Diversity Screen: Effects of Genotype and Environment on Phytochemicals and Dietary Fiber Components†, 10.1021/jf100039b
  101. Heimler Daniela, Vignolini Pamela, Isolani Laura, Arfaioli Paola, Ghiselli Lisetta, Romani Annalisa, Polyphenol Content of Modern and Old Varieties ofTriticum aestivumL. andT. durumDesf. Grains in Two Years of Production, 10.1021/jf1010534
  102. Nuttall J.G., O'Leary G.J., Panozzo J.F., Walker C.K., Barlow K.M., Fitzgerald G.J., Models of grain quality in wheat—A review, 10.1016/j.fcr.2015.12.011
  103. Galieni Angelica, Stagnari Fabio, Visioli Giovanna, Marmiroli Nelson, Speca Stefano, Angelozzi Giovanni, D'Egidio Sara, Pisante Michele, Nitrogen fertilisation of durum wheat: a case study in Mediterranean area during transition to conservation agriculture, 10.4081/ija.2016.662
  104. Visioli Giovanna, Galieni Angelica, Stagnari Fabio, Bonas Urbana, Speca Stefano, Faccini Andrea, Pisante Michele, Marmiroli Nelson, Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture, 10.1371/journal.pone.0156007
  105. Fratianni Alessandra, Giuzio Luigia, Di Criscio Tiziana, Zina Flagella, Panfili Gianfranco, Response of Carotenoids and Tocols of Durum Wheat in Relation to Water Stress and Sulfur Fertilization, 10.1021/jf304168r
  106. Singh Sandeep, Singh Gurpreet, Singh Prabhjeet, Singh Narpinder, Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties, 10.1016/j.foodchem.2007.10.054
  107. Mazzoncini Marco, Antichi Daniele, Silvestri Nicola, Ciantelli Giulia, Sgherri Cristina, Organically vs conventionally grown winter wheat: Effects on grain yield, technological quality, and on phenolic composition and antioxidant properties of bran and refined flour, 10.1016/j.foodchem.2014.11.138
  108. Di Silvestro Raffaella, Marotti Ilaria, Bosi Sara, Bregola Valeria, Carretero Antonio Segura, Sedej Ivana, Mandic Anamarija, Sakac Marijana, Benedettelli Stefano, Dinelli Giovanni, Health-promoting phytochemicals of Italian common wheat varieties grown under low-input agricultural management, 10.1002/jsfa.5590
  109. Aloisi Iris, Parrotta Luigi, Ruiz Karina B., Landi Claudia, Bini Luca, Cai Giampiero, Biondi Stefania, Del Duca Stefano, New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts, 10.3389/fpls.2016.00656
  110. Lutts (2016)
  111. Cáceres Patricio J., Martínez-Villaluenga Cristina, Amigo Lourdes, Frias Juana, Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions, 10.1016/j.foodchem.2013.11.156
  112. Sharma Seema, Saxena Dharmesh C., Riar Charanjit Singh, Antioxidant activity, total phenolics, flavonoids and antinutritional characteristics of germinated foxtail millet (Setaria italica), 10.1080/23311932.2015.1081728
  113. Claver Irakoze Pierre, Zhang Haihua, Li Qin, Zhou Huiming, Zhu Kexue, Optimized Conditions of Steeping and Germination and Their Effect on Sorghum [Sorghum bicolor (L.) Moench] Composition, 10.3923/pjn.2010.686.695
  114. Paucar-Menacho Luz María, Martínez-Villaluenga Cristina, Dueñas Montserrat, Frias Juana, Peñas Elena, Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology, 10.1016/j.lwt.2016.07.064
  115. Paucar-Menacho Luz María, Peñas Elena, Dueñas Montserrat, Frias Juana, Martínez-Villaluenga Cristina, Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology, 10.1016/j.lwt.2016.07.038
  116. Paucar-Menacho Luz María, Martínez-Villaluenga Cristina, Dueñas Montserrat, Frias Juana, Peñas Elena, Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa, 10.1111/ijfs.13623
  117. Bishnoi S., Khetarpaul N., Yadav R. K., Effect of domestic processing and cooking methods on phytic acid and polyphenol contents of pea cultivars (Pisum sativum), 10.1007/bf01088088
  118. Charoenthaikij Phantipha, Jangchud Kamolwan, Jangchud Anuvat, Piyachomkwan Kuakoon, Tungtrakul Patcharee, Prinyawiwatkul Witoon, Germination Conditions Affect Physicochemical Properties of Germinated Brown Rice Flour, 10.1111/j.1750-3841.2009.01345.x
  119. Zhang Qian, Xiang Jun, Zhang Lizhen, Zhu Xiaofeng, Evers Jochem, van der Werf Wopke, Duan Liusheng, Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice, 10.1016/j.jff.2014.06.009
  120. Liu HongKai, Kang YuFan, Zhao XiaoYan, Liu YunPeng, Zhang XiaoWei, Zhang ShuJie, Effects of elicitation on bioactive compounds and biological activities of sprouts, 10.1016/j.jff.2018.12.019
  121. Tan Longyan, Chen Sixue, Wang Tai, Dai Shaojun, Proteomic insights into seed germination in response to environmental factors, 10.1002/pmic.201200394
  122. Świeca Michał, Baraniak Barbara, Influence of elicitation with H2O2on phenolics content, antioxidant potential and nutritional quality ofLens culinarissprouts : Effect of H2O2on lentil sprouts, 10.1002/jsfa.6274
  123. Świeca Michał, Baraniak Barbara, Nutritional and Antioxidant Potential of Lentil Sprouts Affected by Elicitation with Temperature Stress, 10.1021/jf403923x
  124. Guo Liping, Yang Runqiang, Zhou Yulin, Gu Zhenxin, Heat and hypoxia stresses enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts, 10.1007/s00217-015-2522-y
  125. Oh Myung-Min, Rajashekar C. B., Antioxidant content of edible sprouts: effects of environmental shocks, 10.1002/jsfa.3711
  126. Youn Young-Su, Park Jung-Kil, Jang Hae-Dong, Rhee Young-Woo, Sequential hydration with anaerobic and heat treatment increases GABA (γ-aminobutyric acid) content in wheat, 10.1016/j.foodchem.2011.06.020
  127. Li Shuang-Jiang, Bai Yue-Chen, Li Cheng-Lei, Yao Hui-Peng, Chen Hui, Zhao Hai-Xia, Wu Qi, Anthocyanins accumulate in tartary buckwheat (Fagopyrum tataricum) sprout in response to cold stress, 10.1007/s11738-015-1913-9
  128. Nagata Toshifumi, Todoriki Setsuko, Masumizu Toshiki, Suda Ikuo, Furuta Shu, Du Zeji, Kikuchi Shoshi, Levels of Active Oxygen Species Are Controlled by Ascorbic Acid and Anthocyanin inArabidopsis, 10.1021/jf026179+
  129. Samuolienė Giedrė, Urbonavičiūtė Akvilė, Brazaitytė Aušra, Šabajevienė Gintarė, Sakalauskaitė Jurga, Duchovskis Pavelas, The impact of LED illumination on antioxidant properties of sprouted seeds, 10.2478/s11535-010-0094-1
  130. He, 513 (2019)
  131. Urbonavičiūtė, Agron. Res., 7, 761 (2009)
  132. Chen, Res. J. Biotechnol., 9, 15 (2014)
  133. Meng Tianxiao, Nakamura Eriko, Irino Nobuto, Joshi Khem Raj, Devkota Hari Prasad, Yahara Shoji, Kondo Ryuichiro, Effects of Irradiation with Light of Different Photon Densities on the Growth of Young Green Barley Plants, 10.4236/as.2015.62020
  134. Tuan Pham Anh, Thwe Aye Aye, Kim Yeon Bok, Kim Jae Kwang, Kim Sun-Ju, Lee Sanghyun, Chung Sun-Ok, Park Sang Un, Effects of White, Blue, and Red Light-Emitting Diodes on Carotenoid Biosynthetic Gene Expression Levels and Carotenoid Accumulation in Sprouts of Tartary Buckwheat (Fagopyrum tataricum Gaertn.), 10.1021/jf4039937
  135. Samuolienė Giedrė, Sirtautas Ramūnas, Brazaitytė Aušra, Duchovskis Pavelas, LED lighting and seasonality effects antioxidant properties of baby leaf lettuce, 10.1016/j.foodchem.2012.03.061
  136. Koga, Agric. Sci., 4, 185 (2013)
  137. Lee Sang-Won, Seo Jeong Min, Lee Min-Ki, Chun Jin-Hyuk, Antonisamy Paulrayer, Arasu Mariadhas Valan, Suzuki Tatsuro, Al-Dhabi Naif Abdullah, Kim Sun-Ju, Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts, 10.1016/j.indcrop.2014.01.024
  138. Thwe Aye Aye, Kim Yeon Bok, Li Xiaohua, Seo Jeong Min, Kim Sun-Ju, Suzuki Tastsuro, Chung Sun-Ok, Park Sang Un, Effects of Light-Emitting Diodes on Expression of Phenylpropanoid Biosynthetic Genes and Accumulation of Phenylpropanoids in Fagopyrum tataricum Sprouts, 10.1021/jf501335q
  139. Hossen Md. Zakir, Light emitting diodes increase phenolics of buckwheat (Fagopyrum esculentum) sprouts, 10.1080/17429140701288228
  140. Seo Jeong-Min, Arasu Mariadhas Valan, Kim Yeon-Bok, Park Sang Un, Kim Sun-Ju, Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts, 10.1016/j.foodchem.2014.12.094
  141. Tsurunaga Yoko, Takahashi Tetsuya, Katsube Takuya, Kudo Akihide, Kuramitsu Osamu, Ishiwata Masaki, Matsumoto Shingo, Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts, 10.1016/j.foodchem.2013.03.032
  142. KIM Sun-Ju, KAWAHARADA Chiami, SUZUKI Tatsuro, SAITO Katsuichi, HASHIMOTO Naoto, TAKIGAWA Shigenobu, NODA Takahiro, MATSUURA-ENDO Chie, YAMAUCHI Hiroaki, Effect of Natural Light Periods on Rutin, Free Amino Acid and Vitamin C Contents in the Sprouts of Common (Fagopyrum esculentum Moench) and Tartary (F. tataricum Gaertn.) Buckwheats, 10.3136/fstr.12.199
  143. Sharma, Afr. J. Biotechnol., 11, 184 (2012)
  144. YAO L. H., JIANG Y. M., SHI J., TOM�S-BARBER�N F. A., DATTA N., SINGANUSONG R., CHEN S. S., Flavonoids in Food and Their Health Benefits, 10.1007/s11130-004-0049-7
  145. Li Xiaohua, Thwe Aye Aye, Park Nam Il, Suzuki Tatsuro, Kim Sun Ju, Park Sang Un, Accumulation of Phenylpropanoids and Correlated Gene Expression during the Development of Tartary Buckwheat Sprouts, 10.1021/jf301449a
  146. Tosti Giacomo, Benincasa Paolo, Cortona Rossano, Falcinelli Beatrice, Farneselli Michela, Guiducci Marcello, Onofri Andrea, Pannacci Euro, Tei Francesco, Giulietti Mario, Growing lettuce under multispectral light-emitting diodes lamps with adjustable light intensity, 10.4081/ija.2017.883
  147. Lim Jeong-Ho, Park Kee-Jai, Kim Bum-Keun, Jeong Jin-Woong, Kim Hyun-Jin, Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout, 10.1016/j.foodchem.2012.05.068
  148. Stagnari Fabio, Galieni Angelica, D'Egidio Sara, Falcinelli Beatrice, Pagnani Giancarlo, Pace Roberta, Pisante Michele, Benincasa Paolo, Effects of sprouting and salt stress on polyphenol composition and antiradical activity of einkorn, emmer and durum wheat, 10.4081/ija.2017.848
  149. Falcinelli Beatrice, Benincasa Paolo, Calzuola Isabella, Gigliarelli Lilia, Lutts Stanley, Marsili Valeria, Phenolic Content and Antioxidant Activity in Raw and Denatured Aqueous Extracts from Sprouts and Wheatgrass of Einkorn and Emmer Obtained under Salinity, 10.3390/molecules22122132
  150. Bai Qingyun, Yang Runqiang, Zhang Lixia, Gu Zhenxin, Salt Stress Induces Accumulation of γ–Aminobutyric Acid in Germinated Foxtail Millet (Setaria italicaL.), 10.1094/cchem-06-12-0071-r
  151. Zhu, Food Sci., 19, 012 (2015)
  152. Guo Yuanxin, Chen Hui, Song Yu, Gu Zhenxin, Effects of soaking and aeration treatment on γ-aminobutyric acid accumulation in germinated soybean (Glycine max L.), 10.1007/s00217-011-1444-6
  153. Guo Yuanxin, Yang Runqiang, Chen Hui, Song Yu, Gu Zhenxin, Accumulation of γ-aminobutyric acid in germinated soybean (Glycine max L.) in relation to glutamate decarboxylase and diamine oxidase activity induced by additives under hypoxia, 10.1007/s00217-012-1678-y
  154. Yang Runqiang, Guo Qianghui, Gu Zhenxin, GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia, 10.1016/j.foodchem.2012.08.008
  155. Ding Junzhou, Yang Tewu, Feng Hao, Dong Mengyi, Slavin Margaret, Xiong Shanbai, Zhao Siming, Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions, 10.1021/acs.jafc.5b04859
  156. Aurisano N, Anaerobic accumulation of 4-aminobutyrate in rice seedlings; Causes and significance, 10.1016/0031-9422(94)00774-n
  157. Bai Qingyun, Fan Gongjian, Gu Zhenxin, Cao Xionghong, Gu Feirong, Effects of culture conditions on γ-aminobutyric acid accumulation during germination of foxtail millet (Setaria italica L.), 10.1007/s00217-008-0920-0
  158. Guo Yuanxin, Zhu Yunhui, Chen Chunxu, Chen Xiaoman, Effects of Aeration Treatment onγ-Aminobutyric Acid Accumulation in Germinated Tartary Buckwheat (Fagopyrum tataricum), 10.1155/2016/4576758
  159. Świeca Michał, Elicitation with abiotic stresses improves pro-health constituents, antioxidant potential and nutritional quality of lentil sprouts, 10.1016/j.sjbs.2014.12.007
  160. Świeca Michał, Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities, 10.1155/2016/1936516
  161. Baenas Nieves, García-Viguera Cristina, Moreno Diego, Elicitation: A Tool for Enriching the Bioactive Composition of Foods, 10.3390/molecules190913541
  162. D’Amato Roberto, Fontanella Maria Chiara, Falcinelli Beatrice, Beone Gian Maria, Bravi Elisabetta, Marconi Ombretta, Benincasa Paolo, Businelli Daniela, Selenium Biofortification in Rice (Oryza sativa L.) Sprouting: Effects on Se Yield and Nutritional Traits with Focus on Phenolic Acid Profile, 10.1021/acs.jafc.8b00127
  163. Pasko Pawel, Gdula-Argasinska Joanna, Podporska-Carroll Joanna, Quilty Brid, Wietecha-Posluszny Renata, Tyszka-Czochara Malgorzata, Zagrodzki Pawel, Influence of selenium supplementation on fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food, 10.1007/s13197-014-1602-5
  164. Moldovan, J. Agroaliment. Process. Technol., 17, 58 (2011)
  165. Hsu Cheng-Kuang, Chiang Been-Huang, Chen Yih-Shyuan, Yang Joan-Hwa, Liu Chia-Ling, Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water, 10.1016/j.foodchem.2007.11.028
  166. Wang Li, Li Xiaodan, Niu Meng, Wang Ren, Chen Zhengxing, Effect of additives on flavonoids, d - chiro -Inositol and trypsin inhibitor during the germination of tartary buckwheat seeds, 10.1016/j.jcs.2013.07.004
  167. LU ZHAN-HUI, ZHANG YAN, LI LI-TE, CURTIS REMPEL B., KONG XIAO-LIN, FULCHER R. GARY, ZHANG GONG, CAO WEI, Inhibition of Microbial Growth and Enrichment of γ-Aminobutyric Acid during Germination of Brown Rice by Electrolyzed Oxidizing Water, 10.4315/0362-028x-73.3.483
  168. Mendoza-Sánchez Magdalena, Guevara-González Ramón G., Castaño-Tostado Eduardo, Mercado-Silva Edmundo M., Acosta-Gallegos Jorge A., Rocha-Guzmán Nuria E., Reynoso-Camacho Rosalía, Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts, 10.1016/j.foodchem.2016.05.110
  169. Khan Wajahatullah, Prithiviraj Balakrishnan, Smith Donald L., Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves, 10.1078/0176-1617-00905
  170. Lee Young-Sang, Kim Yong-Ho, Kim Sung-Bae, Changes in the Respiration, Growth, and Vitamin C Content of Soybean Sprouts in Response to Chitosan of Different Molecular Weights, 10.21273/hortsci.40.5.1333
  171. Yang Rui, Jiang Yu, Xiu Lili, Huang Jianying, Effect of chitosan pre-soaking on the growth and quality of yellow soybean sprouts : Effect of chitosan pre-soaking on yellow soybean sprouts, 10.1002/jsfa.9338
  172. Peñas Elena, Limón Rocío I., Martínez-Villaluenga Cristina, Restani Patrizia, Pihlanto Anne, Frias Juana, Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts, 10.1007/s11130-015-0508-3
  173. Barrientos Carvacho Herna, Pérez Carmen, Zúñiga Gustavo, Mahn Andrea, Effect of methyl jasmonate, sodium selenate and chitosan as exogenous elicitors on the phenolic compounds profile of broccoli sprouts : Effect of exogenous elicitors on phenolic compounds profile in broccoli sprouts, 10.1002/jsfa.6596
  174. Viacava Gabriela E., Roura Sara I., Principal component and hierarchical cluster analysis to select natural elicitors for enhancing phytochemical content and antioxidant activity of lettuce sprouts, 10.1016/j.scienta.2015.06.041
  175. Zhao Gang, Zhao Jianglin, Peng Lianxin, Zou Liang, Wang Jingbo, Zhong Lingyun, Xiang Dabing, Effects of Yeast Polysaccharide on Growth and Flavonoid Accumulation in Fagopyrum tataricum Sprout Cultures, 10.3390/molecules171011335
  176. Zhao J. L., Zou L., Zhong L. Y., Peng L. X., Ying P. L., Tan M. L., Zhao G., Effects of polysaccharide elicitors from endophyticBionectria pityrodesFat6 on the growth and flavonoid production in tartary buckwheat sprout cultures, 10.1556/0806.43.2015.013
  177. Gawlik-Dziki, Acta Scientiarum Polonorum-Hortorum Cultus, 12, 129 (2013)
  178. Natella Fausta, Maldini Mariateresa, Nardini Mirella, Azzini Elena, Foddai Maria Stella, Giusti Anna Maria, Baima Simona, Morelli Giorgio, Scaccini Cristina, Improvement of the nutraceutical quality of broccoli sprouts by elicitation, 10.1016/j.foodchem.2016.01.063
  179. Baenas Nieves, García-Viguera Cristina, Moreno Diego A., Biotic Elicitors Effectively Increase the Glucosinolates Content in Brassicaceae Sprouts, 10.1021/jf404876z
  180. Baenas Nieves, Ferreres Federico, García-Viguera Cristina, Moreno Diego A., Radish sprouts—Characterization and elicitation of novel varieties rich in anthocyanins, 10.1016/j.foodres.2015.01.009
  181. Ferruzza Simonetta, Natella Fausta, Ranaldi Giulia, Murgia Chiara, Rossi Carlotta, Trošt Kajetan, Mattivi Fulvio, Nardini Mirella, Maldini Mariateresa, Giusti Anna, Moneta Elisabetta, Scaccini Cristina, Sambuy Yula, Morelli Giorgio, Baima Simona, Nutraceutical Improvement Increases the Protective Activity of Broccoli Sprout Juice in a Human Intestinal Cell Model of Gut Inflammation, 10.3390/ph9030048
  182. Jeong Hyejin, Sung Jeehye, Yang Jinwoo, Kim Younghwa, Jeong Heon Sang, Lee Junsoo, Effect of sucrose on the functional composition and antioxidant capacity of buckwheat ( Fagopyrum esculentum M.) sprouts, 10.1016/j.jff.2018.01.019
  183. Meng Tianxiao, Miura Chizuru, Irino Nobuto, Kondo Ryuichiro, Evaluation of the Production of Young Green Barley Plants Containing Functional Ingredients, 10.4236/ajps.2015.62037
  184. Siripongvutikorn Sunisa, Rattanapon Rungtip, Usawakesmanee Worapong, Thongraung Chakree, Improvement nutritional value and bioactivity of ricegrass as affected of priming induced by fish protein hydrolysate, 10.31989/ffhd.v6i4.241
  185. Baenas Nieves, Villaño Debora, García-Viguera Cristina, Moreno Diego A., Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates, 10.1016/j.foodchem.2016.02.144
  186. Pérez-Balibrea Santiago, Moreno Diego A., García-Viguera Cristina, Improving the phytochemical composition of broccoli sprouts by elicitation, 10.1016/j.foodchem.2011.03.049
  187. Yang Hye Jeong, Lim Jeong Ho, Park Kee Jae, Kang Suna, Kim Da Sol, Park Sunmin, Methyl jasmolate treated buckwheat sprout powder enhances glucose metabolism by potentiating hepatic insulin signaling in estrogen-deficient rats, 10.1016/j.nut.2015.07.012
  188. Kim Hyun-Jin, Park Kee-Jai, Lim Jeong-Ho, Metabolomic Analysis of Phenolic Compounds in Buckwheat (Fagopyrum esculentum M.) Sprouts Treated with Methyl Jasmonate, 10.1021/jf200396k
  189. Leong Sze Ying, Burritt David John, Oey Indrawati, Electropriming of wheatgrass seeds using pulsed electric fields enhances antioxidant metabolism and the bioprotective capacity of wheatgrass shoots, 10.1038/srep25306
  190. Wei Yanyan, Shohag M.J.I., Ying Feng, Yang Xiaoe, Wu Chunyong, Wang Yuyan, Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability, 10.1016/j.foodchem.2012.09.134
  191. Prom-u-thai Chanakan, Fukai Shu, Godwin Ian D., Rerkasem Benjavan, Huang Longbin, Iron-fortified parboiled rice – A novel solution to high iron density in rice-based diets, 10.1016/j.foodchem.2008.02.043
  192. Park Sin-Ae, Grusak Michael A., Oh Myung-Min, Concentrations of minerals and phenolic compounds in three edible sprout species treated with iron-chelates during imbibition, 10.1007/s13580-014-0075-9
  193. Zhu, Int. Food Res. J., 21, 991 (2014)
  194. Liu Kunlun, Chen Fusheng, Zhao Yan, Gu Zhenxin, Yang Hongshun, Selenium accumulation in protein fractions during germination of Se-enriched brown rice and molecular weights distribution of Se-containing proteins, 10.1016/j.foodchem.2011.02.010
  195. Lazo-Vélez Marco A., Avilés-González Jonnatan, Serna-Saldivar Sergio O., Temblador-Pérez Maria C., Optimization of wheat sprouting for production of selenium enriched kernels using response surface methodology and desirability function, 10.1016/j.lwt.2015.08.056
  196. Wei Yanyan, Shohag M. J. I., Yang Xiaoe, Biofortification and Bioavailability of Rice Grain Zinc as Affected by Different Forms of Foliar Zinc Fertilization, 10.1371/journal.pone.0045428
  197. Messias Rafael da Silva, Galli Vanessa, Silva Sérgio Delmar Dos Anjos E, Schirmer Manoel Artigas, Rombaldi César Valmor, Micronutrient and Functional Compounds Biofortification of Maize Grains, 10.1080/10408398.2011.649314
  198. Jiang Y., ZH Zeng, Bu Y., CZ Ren, JZ Li, JJ Han, Tao C., Zhang K., XX Wang, GX Lu, YJ Li, YG Hu, Effects of selenium fertilizer on grain yield, Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench), 10.17221/284/2015-pse
  199. Berba, J. Young Investig., 24, 1 (2012)
  200. Riggio Gina M., Wang Qing, Kniel Kalmia E., Gibson Kristen E., Microgreens—A review of food safety considerations along the farm to fork continuum, 10.1016/j.ijfoodmicro.2018.09.027
  201. Yang Yishan, Meier Fabienne, Ann Lo Jerilyn, Yuan Wenqian, Lee Pei Sze Valarie, Chung Hyun-Jung, Yuk Hyun-Gyun, Overview of Recent Events in the Microbiological Safety of Sprouts and New Intervention Technologies : Sprout safety and control…, 10.1111/1541-4337.12010
  202. Ding Hongliu, Fu Tong-Jen, Smith Michelle A., Microbial Contamination in Sprouts: How Effective Is Seed Disinfection Treatment? : Seed disinfection for sprouts…, 10.1111/1750-3841.12064
  203. Dikici Abdullah, Koluman Ahmet, Calicioglu Mehmet, Comparison of effects of mild heat combined with lactic acid on Shiga toxin producing Escherichia coli O157:H7, O103, O111, O145 and O26 inoculated to spinach and soybean sprout, 10.1016/j.foodcont.2014.08.038
  204. Praeger Ulrike, Herppich Werner B., Hassenberg Karin, Aqueous chlorine dioxide treatment of horticultural produce: Effects on microbial safety and produce quality–A review, 10.1080/10408398.2016.1169157
  205. PRODDUK VARA, ANNOUS BASSAM A., LIU LINSHU, YAM KIT L., Evaluation of Chlorine Dioxide Gas Treatment To Inactivate Salmonella enterica on Mungbean Sprouts, 10.4315/0362-028x.jfp-13-407
  206. Chun Ho Hyun, Song Kyung Bin, Optimisation of the combined treatments of aqueous chlorine dioxide, fumaric acid and ultraviolet-C for improving the microbial quality and maintaining sensory quality of common buckwheat sprout, 10.1111/ijfs.12283
  207. Chun Ho Hyun, Song Kyung Bin, The combined effects of aqueous chlorine dioxide, fumaric acid, and ultraviolet-C with modified atmosphere packaging enriched in CO2 for inactivating preexisting microorganisms and Escherichia coli O157:H7 and Salmonella typhimurium inoculated on buckwheat sprouts, 10.1016/j.postharvbio.2013.06.031
  208. Buchovec, Int. J. Food Process. Technol., 1, 1 (2015)
  209. Kwon Joong-Ho, Kim Gui-Ran, Ahn Jae-Jun, Akram Kashif, Bae Hye-Min, Kim Chan-Hee, Kim Yuri, Han Bum-Soo, Changes in Physicochemical, Nutritional and Hygienic Properties of Chinese Cabbage Seeds and Their Sprouts on Gamma and Electron Beam Irradiation : Quality of Irradiated Cabbage Seeds, 10.1111/jfq.12044
  210. Nagar Vandan, Hajare Sachin N., Saroj Sunil D., Bandekar Jayant R., Radiation processing of minimally processed sprouts (dew gram and chick pea): effect on sensory, nutritional and microbiological quality : Quality of radiation hygienised sprouts, 10.1111/j.1365-2621.2011.02885.x
  211. Nagar Vandan, Pansare Godambe Lipika, Shashidhar Ravindranath, Development of microbiologically safe mung bean sprouts using combination treatment of sodium hypochlorite and gamma radiation, 10.1111/ijfs.13020
  212. Raimondi Giampaolo, Rouphael Youssef, Kyriacou Marios C., Di Stasio Emilio, Barbieri Giancarlo, De Pascale Stefania, Genotypic, storage and processing effects on compositional and bioactive components of fresh sprouts, 10.1016/j.lwt.2017.01.005
  213. Vale A.P., Santos J., Brito N.V., Marinho C., Amorim V., Rosa E., Oliveira M. Beatriz P.P., Effect of refrigerated storage on the bioactive compounds and microbial quality of Brassica oleraceae sprouts, 10.1016/j.postharvbio.2015.06.013
  214. Kim Ji Gang, Luo Yaguang, Gross Kenneth C., Effect of package film on the quality of fresh-cut salad savoy, 10.1016/j.postharvbio.2003.10.006
  215. Sandhya, Modified atmosphere packaging of fresh produce: Current status and future needs, 10.1016/j.lwt.2009.05.018
  216. Xiao Zhenlei, Luo Yaguang, Lester Gene E., Kou Liping, Yang Tianbao, Wang Qin, Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment, 10.1016/j.lwt.2013.09.009
  217. Kou Liping, Luo Yaguang, Yang Tianbao, Xiao Zhenlei, Turner Ellen R., Lester Gene E., Wang Qin, Camp Mary J., Postharvest biology, quality and shelf life of buckwheat microgreens, 10.1016/j.lwt.2012.11.017
  218. DeEll Jennifer R., Vigneault Clément, Favre Frédérique, Rennie Timothy J., Khanizadeh Shahrokh, Vacuum Cooling and Storage Temperature Influence the Quality of Stored Mung Bean Sprouts, 10.21273/hortsci.35.5.891
  219. Goyal Ankit, Siddiqui Saleem, Effects of ultraviolet irradiation, pulsed electric field, hot water dip and ethanol vapours treatment on keeping and sensory quality of mung bean (Vigna radiata L. Wilczek) sprouts, 10.1007/s13197-012-0743-7
  220. Lu Yingjian, Dong Wen, Alcazar Jonathan, Yang Tianbao, Luo Yaguang, Wang Qin, Chen Pei, Effect of preharvest CaCl 2 spray and postharvest UV-B radiation on storage quality of broccoli microgreens, a richer source of glucosinolates, 10.1016/j.jfca.2017.12.035
  221. Xiao Zhenlei, Lester Gene E., Luo Yaguang, Xie Zhuohong (Kenny), Yu Liangli (Lucy), Wang Qin, Effect of light exposure on sensorial quality, concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage, 10.1016/j.foodchem.2013.11.086
  222. Singh, Int. J. Pharm. Sci. Res., 7, 852 (2016)
  223. Pardeshi, J. Food Res. Technol., 1, 1 (2013)
  224. Akbas Elif, Kilercioglu Mete, Onder Ozge Nur, Koker Alperen, Soyler Betul, Oztop Mecit Halil, Wheatgrass juice to wheat grass powder: Encapsulation, physical and chemical characterization, 10.1016/j.jff.2016.11.010
  225. Shokoohi M., Razavi S.H., Labbafi M., Vahidinia A., Gharibzahedi S.M.T., Wheat sprout flour as an attractive substrate for the producing probiotic fermented beverages: process development and product characterisation, 10.3920/qas2014.0402
  226. Hallén Elin, İbanoğlu Şenol, Ainsworth Paul, Effect of fermented/germinated cowpea flour addition on the rheological and baking properties of wheat flour, 10.1016/s0260-8774(03)00298-x
  227. Cho Jung Sun, Kim Hyeyoung, Quality Characteristics of Muffins by the Addition of Dried Barley Sprout Powder, 10.9724/kfcs.2014.30.1.001
  228. Sirisoontaralak Porntip, Nakornpanom Nantarat Na, Koakietdumrongkul Kittiya, Panumaswiwath Chutima, Development of quick cooking germinated brown rice with convenient preparation and containing health benefits, 10.1016/j.lwt.2014.11.015
  229. Jongyingcharoen Jiraporn Sripinyowanich, Cheevitsopon Ekkapong, Development of UV-treated cooked germinated brown rice and effect of UV-C treatment on its storability, GABA content, and quality, 10.1016/j.lwt.2016.03.044
  230. Liu Ting, Hou Gary G., Cardin Marie, Marquart Len, Dubat Arnaud, Quality attributes of whole-wheat flour tortillas with sprouted whole-wheat flour substitution, 10.1016/j.lwt.2016.11.017
  231. Zhu Lijia, Adedeji Akinbode A., Alavi Sajid, Effect of Germination and Extrusion on Physicochemical Properties and Nutritional Qualities of Extrudates and Tortilla from Wheat : Germination and extrusion effect on tortilla…, 10.1111/1750-3841.13797
  232. Márton, Acta Univ. Sapientiae, 3, 81 (2010)
  233. Fardet Anthony, Rock Edmond, Rémésy Christian, Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo?, 10.1016/j.jcs.2008.01.002
  234. Imam Mustapha Umar, Azmi Nur Hanisah, Bhanger Muhammad Iqbal, Ismail Norsharina, Ismail Maznah, Antidiabetic Properties of Germinated Brown Rice: A Systematic Review, 10.1155/2012/816501
  235. Jacobs David R., Tapsell Linda C., Food, Not Nutrients, Is the Fundamental Unit in Nutrition, 10.1111/j.1753-4887.2007.tb00269.x
  236. Imam Mustapha Umar, Ishaka Aminu, Ooi Der-Jiun, Zamri Nur Diyana Md, Sarega Nadarajan, Ismail Maznah, Esa Norhaizan Mohd, Germinated brown rice regulates hepatic cholesterol metabolism and cardiovascular disease risk in hypercholesterolaemic rats, 10.1016/j.jff.2014.03.013
  237. Adamu Hadiza Altine, Imam Mustapha Umar, Ooi Der-Jiun, Esa Norhaizan Mohd, Rosli Rozita, Ismail Maznah, Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring, 10.3402/fnr.v60.30209
  238. Lim See Meng, Goh Yong Meng, Mohtarrudin Norhafizah, Loh Su Peng, Germinated brown rice ameliorates obesity in high-fat diet induced obese rats, 10.1186/s12906-016-1116-y
  239. Shen Kuo-Ping, Hao Chi-Long, Yen Hsueh-Wei, Chen Chun-Yen, Wu Bin-Nan, Lin Hui-Li, Pre-germinated brown rice prevents high-fat diet induced hyperglycemia through elevated insulin secretion and glucose metabolism pathway in C57BL/6J strain mice, 10.3164/jcbn.14-50
  240. Azmi Nur Hanisah, Ismail Maznah, Ismail Norsharina, Imam Mustapha Umar, Alitheen Noorjahan Banu Mohammed, Abdullah Maizaton Atmadini, Germinated Brown Rice Alters Aβ(1-42) Aggregation and Modulates Alzheimer’s Disease-Related Genes in Differentiated Human SH-SY5Y Cells, 10.1155/2015/153684
  241. Merendino Nicolò, Molinari Romina, Costantini Lara, Mazzucato Andrea, Pucci Anna, Bonafaccia Francesco, Esti Marco, Ceccantoni Brunella, Papeschi Cristiano, Bonafaccia Giovanni, A new “functional” pasta containing tartary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats, 10.1039/c3fo60683j
Bibliographic reference Benincasa, Paolo ; Falcinelli, Beatrice ; Lutts, Stanley ; Stagnari, Fabio ; Galieni, Angelica. Sprouted Grains: A Comprehensive Review. In: Nutrients, Vol. 11, no.2, p. 421 (2019)
Permanent URL