User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

The activity of the saponin ginsenoside Rh2 is enhanced by the interaction with membrane sphingomyelin but depressed by cholesterol.

  • Open access
  • PDF
  • 2.73 M
  1. van Meer Gerrit, Voelker Dennis R., Feigenson Gerald W., Membrane lipids: where they are and how they behave, 10.1038/nrm2330
  2. Singer S. J., Nicolson G. L., The Fluid Mosaic Model of the Structure of Cell Membranes, 10.1126/science.175.4023.720
  3. Simons Kai, Ikonen Elina, Functional rafts in cell membranes, 10.1038/42408
  4. Lingwood Daniel, Kaiser Hermann-Josef, Levental Ilya, Simons Kai, Lipid rafts as functional heterogeneity in cell membranes, 10.1042/bst0370955
  5. Carquin Mélanie, D’Auria Ludovic, Pollet Hélène, Bongarzone Ernesto R., Tyteca Donatienne, Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains, 10.1016/j.plipres.2015.12.004
  6. Mollinedo Faustino, Gajate Consuelo, Lipid rafts as major platforms for signaling regulation in cancer, 10.1016/j.jbior.2014.10.003
  7. Lorent Joseph H., Quetin-Leclercq Joëlle, Mingeot-Leclercq Marie-Paule, The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells, 10.1039/c4ob01652a
  8. Lorent Joseph, Lins Laurence, Domenech Òscar, Quetin-Leclercq Joelle, Brasseur Robert, Mingeot-Leclercq Marie-Paule, Domain Formation and Permeabilization Induced by the Saponin α-Hederin and Its Aglycone Hederagenin in a Cholesterol-Containing Bilayer, 10.1021/la4049902
  9. Lorent Joseph, Léonard Catherine, Abouzi Marthe, Akabi Farida, Quetin-Leclercq Joëlle, Mingeot-Leclercq Marie-Paule, α-Hederin Induces Apoptosis, Membrane Permeabilization and Morphologic Changes in Two Cancer Cell Lines Through a Cholesterol-Dependent Mechanism, 10.1055/s-0042-114780
  10. Korchowiec Beata, Gorczyca Marcelina, Wojszko Kamila, Janikowska Maria, Henry Max, Rogalska Ewa, Impact of two different saponins on the organization of model lipid membranes, 10.1016/j.bbamem.2015.06.007
  11. Sudji Ikhwan, Subburaj Yamunadevi, Frenkel Nataliya, García-Sáez Ana, Wink Michael, Membrane Disintegration Caused by the Steroid Saponin Digitonin Is Related to the Presence of Cholesterol, 10.3390/molecules201119682
  12. SUCHA LENKA, HROCH MILOS, REZACOVA MARTINA, RUDOLF EMIL, HAVELEK RADIM, SISPERA LUDEK, CMIELOVA JANA, KOHLEROVA RENATA, BEZROUK ALES, TOMSIK PAVEL, The cytotoxic effect of α-tomatine in MCF-7 human adenocarcinoma breast cancer cells depends on its interaction with cholesterol in incubation media and does not involve apoptosis induction, 10.3892/or.2013.2778
  13. Keukens Erik A.J., de Vrije Truus, Jansen Léon A.M., de Boer Hilde, Janssen Marjolein, de Kroon Anton I.P.M., Jongen Wim M.F., de Kruijff Ben, Glycoalkaloids selectively permeabilize cholesterol containing biomembranes, 10.1016/0005-2736(95)00253-7
  14. BANGHAM A. D., HORNE R. W., Action of Saponin on Biological Cell Membranes, 10.1038/196952a0
  15. Nag Subhasree Ashok, Ginsenosides as anticancer agents: In vitro and in vivo activities, structure–activity relationships, and molecular mechanisms of action, 10.3389/fphar.2012.00025
  16. Yi Jae-Sung, Choo Hyo-Jung, Cho Bong-Rae, Kim Hwan-Myung, Kim Yong-Nyun, Ham Young-Mi, Ko Young-Gyu, Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption, 10.1016/j.bbrc.2009.05.028
  17. Park E-K, Lee EJ, Lee S-H, Koo KH, Sung JY, Hwang EH, Park JH, Kim C-W, Jeong K-C, Park B-K, Kim Y-N, Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt : Rh2 affects raft internalization and Akt, 10.1111/j.1476-5381.2010.00768.x
  18. Verstraeten Sandrine L., Albert Marie, Paquot Adrien, Muccioli Giulio G., Tyteca Donatienne, Mingeot-Leclercq Marie-Paule, Membrane cholesterol delays cellular apoptosis induced by ginsenoside Rh2, a steroid saponin, 10.1016/j.taap.2018.05.014
  19. Ducarme Ph., Rahman M., Brasseur R., IMPALA: A simple restraint field to simulate the biological membrane in molecular structure studies, 10.1002/(sici)1097-0134(19980301)30:4<357::aid-prot3>3.0.co;2-g
  20. Brasseru R., Killian J.A., De Kruijff B., Ruysschaert J.M., Conformational analysis of gramicidin-gramicidin interactions at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase, 10.1016/0005-2736(87)90150-7
  21. Bagatolli Luis A., Parasassi Tiziana, Fidelio Gerardo D., Gratton Enrico, A Model for the Interaction of 6-Lauroyl-2-(N,N-dimethylamino)naphthalene with Lipid Environments: Implications for Spectral Properties, 10.1562/0031-8655(1999)070<0557:amftio>2.3.co;2
  22. Parasassi T., De Stasio G., d'Ubaldo A., Gratton E., Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence, 10.1016/s0006-3495(90)82637-0
  23. Filippov Andrey, Orädd Greger, Lindblom Göran, Sphingomyelin Structure Influences the Lateral Diffusion and Raft Formation in Lipid Bilayers, 10.1529/biophysj.105.075150
  24. Jiménez-Rojo Noemi, García-Arribas Aritz B., Sot Jesús, Alonso Alicia, Goñi Félix M., Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: A glimpse into sphingolipid complexity, 10.1016/j.bbamem.2013.10.010
  25. do Canto António M.T.M., Robalo João R., Santos Patrícia D., Carvalho Alfredo J. Palace, Ramalho J.P. Prates, Loura Luís M.S., Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study, 10.1016/j.bbamem.2016.07.013
  26. Juhasz Janos, Davis James H., Sharom Frances J., Fluorescent probe partitioning in giant unilamellar vesicles of ‘lipid raft’ mixtures, 10.1042/bj20100516
  27. de Almeida Rodrigo F.M., Fedorov Aleksandre, Prieto Manuel, Sphingomyelin/Phosphatidylcholine/Cholesterol Phase Diagram: Boundaries and Composition of Lipid Rafts, 10.1016/s0006-3495(03)74664-5
  28. Goñi Félix M., Alonso Alicia, Bagatolli Luis A., Brown Rhoderick E., Marsh Derek, Prieto Manuel, Thewalt Jenifer L., Phase diagrams of lipid mixtures relevant to the study of membrane rafts, 10.1016/j.bbalip.2008.09.002
  29. Drücker Patrick, Pejic Milena, Galla Hans-Joachim, Gerke Volker, Lipid Segregation and Membrane Budding Induced by the Peripheral Membrane Binding Protein Annexin A2, 10.1074/jbc.m113.474023
  30. Augustin Jörg M., Kuzina Vera, Andersen Sven B., Bak Søren, Molecular activities, biosynthesis and evolution of triterpenoid saponins, 10.1016/j.phytochem.2011.01.015
  31. dos Santos Andreia G., Bayiha Jules César, Dufour Gilles, Cataldo Didier, Evrard Brigitte, Silva Liana C., Deleu Magali, Mingeot-Leclercq Marie-Paule, Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl-β-cyclodextrin complex, 10.1016/j.bbamem.2017.06.010
  32. Lorent Joseph, Le Duff Cécile S., Quetin-Leclercq Joelle, Mingeot-Leclercq Marie-Paule, Induction of Highly Curved Structures in Relation to Membrane Permeabilization and Budding by the Triterpenoid Saponins, α- and δ-Hederin, 10.1074/jbc.m112.407635
  33. NAKAMURA TATSUNOSUKE, INOUE KEIZO, NOJIMA SHOSHICHI, SANKAWA USHIO, SHOJI JUNZO, KAWASAKI TOSHIO, SHIBATA SHOJI, Interaction of saponins with red blood cells as well as with the phosphatidylcholine liposomal membranes., 10.1248/bpb1978.2.374
  34. Hu Mei, Konoki Keiichi, Tachibana Kazuo, Cholesterol-independent membrane disruption caused by triterpenoid saponins, 10.1016/0005-2760(95)00214-6
  35. García-Sáez Ana J., Chiantia Salvatore, Schwille Petra, Effect of Line Tension on the Lateral Organization of Lipid Membranes, 10.1074/jbc.m706162200
  36. Lin Fu, Wang Renxiao, Hemolytic mechanism of dioscin proposed by molecular dynamics simulations, 10.1007/s00894-009-0523-0
  37. Bakrač Biserka, Gutiérrez-Aguirre Ion, Podlesek Zdravko, Sonnen Andreas F.-P., Gilbert Robert J. C., Maček Peter, Lakey Jeremy H., Anderluh Gregor, Molecular Determinants of Sphingomyelin Specificity of a Eukaryotic Pore-forming Toxin, 10.1074/jbc.m708747200
  38. Bakrač Biserka, Anderluh Gregor, Molecular Mechanism of Sphingomyelin-Specific Membrane Binding and Pore Formation by Actinoporins, Advances in Experimental Medicine and Biology (2010) ISBN:9781441963260 p.106-115, 10.1007/978-1-4419-6327-7_9
  39. Schön Peter, García-Sáez Ana J., Malovrh Petra, Bacia Kirsten, Anderluh Gregor, Schwille Petra, Equinatoxin II Permeabilizing Activity Depends on the Presence of Sphingomyelin and Lipid Phase Coexistence, 10.1529/biophysj.108.129981
  40. Claereboudt Emily J. S., Eeckhaut Igor, Lins Laurence, Deleu Magali, How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers, 10.1038/s41598-018-29223-x
  41. Hope M.J., Bally M.B., Webb G., Cullis P.R., Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential, 10.1016/0005-2736(85)90521-8
  42. Bartlett, G. R. Phosphorus assay in column chromatography. J Biol Chem 234, 466–468 (1959).
  43. Razafindralambo H., Dufour S., Paquot M., Deleu M., Thermodynamic studies of the binding interactions of surfactin analogues to lipid vesicles : Application of isothermal titration calorimetry, 10.1007/s10973-008-9403-6
  44. Harris Faith M, Best Katrina B, Bell John D, Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order, 10.1016/s0005-2736(02)00514-x
  45. Weinstein J., Yoshikami S, Henkart P, Blumenthal R, Hagins W., Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker, 10.1126/science.835007
  46. Hoekstra Dick, De Boer Tiny, Klappe Karin, Wilschut Jan, Fluorescence method for measuring the kinetics of fusion between biological membranes, 10.1021/bi00319a002
  47. Rodriguez Nicolas, Pincet Frédéric, Cribier Sophie, Giant vesicles formed by gentle hydration and electroformation: A comparison by fluorescence microscopy, 10.1016/j.colsurfb.2005.01.010
Bibliographic reference Verstraeten, Sandrine ; Deleu, Magali ; Janikowska-Sagan, Maria ; Claereboudt, Emily J S ; Lins, Laurence ; et. al. The activity of the saponin ginsenoside Rh2 is enhanced by the interaction with membrane sphingomyelin but depressed by cholesterol.. In: Scientific reports, Vol. 9, no.1, p. 7285 [1-14] (2019)
Permanent URL http://hdl.handle.net/2078.1/216682