Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis
Quantized Compressive Sensing with RIP Matrices: The Benefit of Dithering
Primary tabs
- Open access
- 973.44 K
Document type | Article de périodique (Journal article) – Article de recherche |
---|---|
Access type | Accès libre |
Publication date | 2019 |
Language | Anglais |
Journal information | "Information and Inference" - (2019) |
Peer reviewed | yes |
Publisher | Oxford University Press (Oxford) (Oxford) |
issn | 2049-8764 |
Publication status | Accepté/Sous presse |
Affiliations |
UCL
- SST/ICTM/ELEN - Pôle en ingénierie électrique UCL - SST/ICTM/INMA - Pôle en ingénierie mathématique |
Keywords | compressive sensing ; quantization ; dithering ; sparse representation ; measure concentration ; random embedding |
Links |
- ADCOCK BEN, HANSEN ANDERS C., POON CLARICE, ROMAN BOGDAN, BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING, 10.1017/fms.2016.32
- Ai Albert, Lapanowski Alex, Plan Yaniv, Vershynin Roman, One-bit compressed sensing with non-Gaussian measurements, 10.1016/j.laa.2013.04.002
- Anitori Laura, Maleki Arian, Otten Matern, Baraniuk Richard G., Hoogeboom Peter, Design and Analysis of Compressed Sensing Radar Detectors, 10.1109/tsp.2012.2225057
- Ayaz Ulaş, Dirksen Sjoerd, Rauhut Holger, Uniform recovery of fusion frame structured sparse signals, 10.1016/j.acha.2016.03.006
- Baraniuk Richard, Davenport Mark, DeVore Ronald, Wakin Michael, A Simple Proof of the Restricted Isometry Property for Random Matrices, 10.1007/s00365-007-9003-x
- Baraniuk Richard G., Cevher Volkan, Duarte Marco F., Hegde Chinmay, Model-Based Compressive Sensing, 10.1109/tit.2010.2040894
- Baraniuk Richard G., Foucart Simon, Needell Deanna, Plan Yaniv, Wootters Mary, Exponential Decay of Reconstruction Error From Binary Measurements of Sparse Signals, 10.1109/tit.2017.2688381
- Blumensath Thomas, Davies Mike E., Iterative hard thresholding for compressed sensing, 10.1016/j.acha.2009.04.002
- Boufounos Petros T., Universal Rate-Efficient Scalar Quantization, 10.1109/tit.2011.2173899
- Boufounos Petros T., Baraniuk Richard G., 1-Bit compressive sensing, 10.1109/ciss.2008.4558487
- Boufounos Petros T., Jacques Laurent, Krahmer Felix, Saab Rayan, Quantization and Compressive Sensing, Compressed Sensing and its Applications (2015) ISBN:9783319160412 p.193-237, 10.1007/978-3-319-16042-9_7
- Boufounos Petros T, Rane Shantanu, Mansour Hassan, Representation and coding of signal geometry, 10.1093/imaiai/iax002
- Bussgang, Crosscorrelation functions of amplitude-distorted Gaussian signals (1952)
- Candès Emmanuel J, Plan Y, Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements, 10.1109/tit.2011.2111771
- Candès Emmanuel J., Romberg Justin K., Tao Terence, Stable signal recovery from incomplete and inaccurate measurements, 10.1002/cpa.20124
- Candes E.J., Tao T., Decoding by Linear Programming, 10.1109/tit.2005.858979
- Candes Emmanuel J., Tao Terence, Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?, 10.1109/tit.2006.885507
- Carrillo R. E., McEwen J. D., Wiaux Y., Sparsity Averaging Reweighted Analysis (SARA): a novel algorithm for radio-interferometric imaging : SARA for radio-interferometric imaging, 10.1111/j.1365-2966.2012.21605.x
- Chandrasekaran Venkat, Recht Benjamin, Parrilo Pablo A., Willsky Alan S., The Convex Geometry of Linear Inverse Problems, 10.1007/s10208-012-9135-7
- Cohen Albert, Dahmen Wolfgang, DeVore Ronald, Compressed sensing and best $k$-term approximation, 10.1090/s0894-0347-08-00610-3
- Dai Wei, Pham Hoa Vinh, Milenkovic Olgica, Distortion-rate functions for quantized compressive sensing, 10.1109/itwnit.2009.5158565
- Dattorro, Convex Optimization & Euclidean Distance Geometry (2005)
- Dirksen Sjoerd, Tail bounds via generic chaining, 10.1214/ejp.v20-3760
- Dirksen (2017)
- Donoho D.L., Compressed sensing, 10.1109/tit.2006.871582
- Ender Joachim H.G., On compressive sensing applied to radar, 10.1016/j.sigpro.2009.11.009
- Fazel (2002)
- Feng Joe-Mei, Krahmer Felix, Saab Rayan, Quantized compressed sensing for partial random circulant matrices, 10.1109/sampta.2017.8024436
- Feuillen Thomas, Xu Chunlei, Louveaux Jerome, Vandendorpe Luc, Jacques Laurent, Quantity over Quality: Dithered Quantization for Compressive Radar Systems, 10.1109/radar.2019.8835568
- Foucart Simon, Hard Thresholding Pursuit: An Algorithm for Compressive Sensing, 10.1137/100806278
- Foucart Simon, Rauhut Holger, A Mathematical Introduction to Compressive Sensing, ISBN:9780817649470, 10.1007/978-0-8176-4948-7
- Golbabaee Mohammad, Vandergheynst Pierre, Hyperspectral image compressed sensing via low-rank and joint-sparse matrix recovery, 10.1109/icassp.2012.6288484
- Gray R.M., Neuhoff D.L., Quantization, 10.1109/18.720541
- Gu Xiaoyi, Tu Shenyinying, Shi Hao-Jun Michael, Case Mindy, Needell Deanna, Plan Yaniv, Optimizing Quantization for Lasso Recovery, 10.1109/lsp.2017.2770018
- Güntürk C. S., Lammers M., Powell A. M., Saab R., Yılmaz Ö., Sobolev Duals for Random Frames and ΣΔ Quantization of Compressed Sensing Measurements, 10.1007/s10208-012-9140-x
- Huynh, Commun. Pure Appl. Math. (2018)
- Jacques, IEEE Trans. Inf. Theory, 62, 4696 (2016)
- Jacques, IEEE Trans. Inf. Theory, 63, 5477 (2017)
- Jacques Laurent, Cambareri Valerio, Time for dithering: fast and quantized random embeddings via the restricted isometry property, 10.1093/imaiai/iax004
- Jacques, 10th International Conference on Sampling Theory and Applications (SampTA 2013), 105 (2013)
- Jacques Laurent, Laska Jason N., Boufounos Petros T., Baraniuk Richard G., Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors, 10.1109/tit.2012.2234823
- Kamilov U. S., Goyal V. K., Rangan S., Message-Passing De-Quantization With Applications to Compressed Sensing, 10.1109/tsp.2012.2217334
- Keriven Nicolas, Bourrier Anthony, Gribonval Rémi, Pérez Patrick, Sketching for large-scale learning of mixture models, 10.1093/imaiai/iax015
- Klartag B., Mendelson S., Empirical processes and random projections, 10.1016/j.jfa.2004.10.009
- Knudson Karin, Saab Rayan, Ward Rachel, One-Bit Compressive Sensing With Norm Estimation, 10.1109/tit.2016.2527637
- Kolmogorov, Uspekhi Mat. Nauk, 14, 3 (1959)
- Ledoux, Probability in Banach Spaces: Isoperimetry and Processes (2013)
- Liaw Christopher, Mehrabian Abbas, Plan Yaniv, Vershynin Roman, A Simple Tool for Bounding the Deviation of Random Matrices on Geometric Sets, Lecture Notes in Mathematics (2017) ISBN:9783319452814 p.277-299, 10.1007/978-3-319-45282-1_18
- Mendelson Shahar, Pajor Alain, Tomczak-Jaegermann Nicole, Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles, 10.1007/s00365-007-9005-8
- Moshtaghpour A., Jacques L., Cambareri V., Degraux K., De Vleeschouwer C., Consistent Basis Pursuit for Signal and Matrix Estimates in Quantized Compressed Sensing, 10.1109/lsp.2015.2497543
- Nam S., Davies M.E., Elad M., Gribonval R., The cosparse analysis model and algorithms, 10.1016/j.acha.2012.03.006
- Natarajan B. K., Sparse Approximate Solutions to Linear Systems, 10.1137/s0097539792240406
- Nguyen Ha Q., Goyal Vivek K., Varshney Lav R., Frame permutation quantization, 10.1016/j.acha.2010.10.003
- Oymak, Technical Report (2015)
- Oymak, Inf. Inference, 7, 707 (2018)
- Pai, Nonadaptive lossy encoding of sparse signals (2006)
- Pisier, The Volume of Convex Bodies and Banach Space Geometry (1999)
- Plan Yaniv, Vershynin Roman, Robust 1-bit Compressed Sensing and Sparse Logistic Regression: A Convex Programming Approach, 10.1109/tit.2012.2207945
- Plan Yaniv, Vershynin Roman, Dimension Reduction by Random Hyperplane Tessellations, 10.1007/s00454-013-9561-6
- Plan Yaniv, Vershynin Roman, The Generalized Lasso With Non-Linear Observations, 10.1109/tit.2016.2517008
- Plan, Inf. Inference, 6, 1 (2016)
- Rauhut, Compressive Sensing and Structured Random Matrices, 1 (2010)
- Rauhut Holger, Schnass Karin, Vandergheynst Pierre, Compressed Sensing and Redundant Dictionaries, 10.1109/tit.2008.920190
- Recht Benjamin, Fazel Maryam, Parrilo Pablo A., Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization, 10.1137/070697835
- Shi Hao-Jun Michael, Case Mindy, Gu Xiaoyi, Tu Shenyinying, Needell Deanna, Methods for quantized compressed sensing, 10.1109/ita.2016.7888203
- Tillmann Andreas M., Gribonval Remi, Pfetsch Marc E., Projection onto the cosparse set is NP-hard, 10.1109/icassp.2014.6854987
- Tropp Joel A., Gilbert Anna C., Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit, 10.1109/tit.2007.909108
- Vershynin Roman, Introduction to the non-asymptotic analysis of random matrices, Compressed Sensing ISBN:9780511794308 p.210-268, 10.1017/cbo9780511794308.006
- Zebadua Augusto Gabriel, Amblard Pierre-Olivier, Moisan Eric, Michel Olivier J. J., Compressed and Quantized Correlation Estimators, 10.1109/tsp.2016.2597128
- Zebadua, Traitement du signal dans le domaine compressé et quantification sur un bit: deux outils pour les contextes sous contraintes de communication (2017)
- Zymnis A., Boyd S., Candes E., Compressed Sensing With Quantized Measurements, 10.1109/lsp.2009.2035667
Bibliographic reference | Xu, Chunlei ; Jacques, Laurent. Quantized Compressive Sensing with RIP Matrices: The Benefit of Dithering. In: Information and Inference, (2019) |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/216652 |