Ha, Viet Anh
[UCL]
Yu, Guodong
[UCL]
Ricci, Francesco
[UCL]
Dahliah, Diana
[UCL]
van Setten, Michiel
[UCL]
Giantomassi, Matteo
[UCL]
Rignanese, Gian-Marco
[UCL]
Hautier, Geoffroy
[UCL]
High-performance p-type transparent conducting materials (TCMs) must exhibit a rare combination of properties including high mobility, transparency, and p-type dopability. The development of high-mobility/conductivity p-type TCMs is necessary for many applications such as solar cells or transparent electronic devices. Oxides have been traditionally considered as the most promising chemical space to dig out novel p-type TCMs. However, nonoxides might perform better than traditional p-type TCMs (oxides) in terms of mobility. We report on a high-throughput computational search for nonoxide p-type TCMs from a large data set of more than 30 000 compounds which identified CaTe and Li3Sb as very good candidates for high-mobility p-type TCMs. From our calculations, both compounds are expected to be p-type dopable: intrinsically for Li3Sb while CaTe would require extrinsic doping. Using electron-phonon computations, we estimate hole mobilities at room temperature to be about 20 and 70 cm2/V s for CaTe and Li3Sb, respectively. These are “upper bound” values as only scattering with phonons is taken into account. The computed hole mobility for Li3Sb is quite exceptional and comparable with the electron mobility in the best n-type TCMs.
- Ohta Hiromichi, Hosono Hideo, Transparent oxide optoelectronics, 10.1016/s1369-7021(04)00288-3
- Transparent Electronics: From Synthesis to Applications (2010)
- Ellmer Klaus, Past achievements and future challenges in the development of optically transparent electrodes, 10.1038/nphoton.2012.282
- Barquinha Pedro, Martins Rodrigo, Pereira Luis, Fortunato Elvira, Transparent Oxide Electronics : From Materials to Devices, ISBN:9781119966999, 10.1002/9781119966999
- Fortunato E., Barquinha P., Martins R., Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances, 10.1002/adma.201103228
- Dixon Sebastian C., Scanlon David O., Carmalt Claire J., Parkin Ivan P., n-Type doped transparent conducting binary oxides: an overview, 10.1039/c6tc01881e
- Hautier Geoffroy, Miglio Anna, Ceder Gerbrand, Rignanese Gian-Marco, Gonze Xavier, Identification and design principles of low hole effective mass p-type transparent conducting oxides, 10.1038/ncomms3292
- Varley J. B., Lordi V., Miglio A., Hautier G., Electronic structure and defect properties ofB6Ofrom hybrid functional and many-body perturbation theory calculations: A possible ambipolar transparent conductor, 10.1103/physrevb.90.045205
- Bhatia Amit, Hautier Geoffroy, Nilgianskul Tan, Miglio Anna, Sun Jingying, Kim Hyung Joon, Kim Kee Hoon, Chen Shuo, Rignanese Gian-Marco, Gonze Xavier, Suntivich Jin, High-Mobility Bismuth-based Transparent p-Type Oxide from High-Throughput Material Screening, 10.1021/acs.chemmater.5b03794
- Yanagi Hiroshi, Tate Janet, Park Sangmoon, Park Cheol-Hee, Keszler Douglas A., p-type conductivity in wide-band-gap BaCuQF (Q=S,Se), 10.1063/1.1571224
- Park Sangmoon, Keszler Douglas A., Valencia Melinda M., Hoffman Randy L., Bender Jeffrey P., Wager John F., Transparent p-type conducting BaCu2S2 films, 10.1063/1.1485133
- Woods-Robinson Rachel, Cooper Jason K., Xu Xiaojie, Schelhas Laura T., Pool Vanessa L., Faghaninia Alireza, Lo Cynthia S., Toney Michael F., Sharp Ian D., Ager Joel W., P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature, 10.1002/aelm.201500396
- Ueda K., Inoue S., Hirose S., Kawazoe H., Hosono H., Transparent p-type semiconductor: LaCuOS layered oxysulfide, 10.1063/1.1319507
- Yan Feng, Zhang Xiuwen, Yu Yonggang G., Yu Liping, Nagaraja Arpun, Mason Thomas O., Zunger Alex, Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements, 10.1038/ncomms8308
- Varley Joel B., Miglio Anna, Ha Viet-Anh, van Setten Michiel J., Rignanese Gian-Marco, Hautier Geoffroy, High-Throughput Design of Non-oxide p-Type Transparent Conducting Materials: Data Mining, Search Strategy, and Identification of Boron Phosphide, 10.1021/acs.chemmater.6b04663
- Kormath Madam Raghupathy Ramya, Kühne Thomas D., Felser Claudia, Mirhosseini Hossein, Rational design of transparent p-type conducting non-oxide materials from high-throughput calculations, 10.1039/c7tc05311h
- Kormath Madam Raghupathy Ramya, Wiebeler Hendrik, Kühne Thomas D., Felser Claudia, Mirhosseini Hossein, Database Screening of Ternary Chalcogenides for P-type Transparent Conductors, 10.1021/acs.chemmater.8b02719
- Ricci Francesco, Chen Wei, Aydemir Umut, Snyder G. Jeffrey, Rignanese Gian-Marco, Jain Anubhav, Hautier Geoffroy, An ab initio electronic transport database for inorganic materials, 10.1038/sdata.2017.85
- Jain Anubhav, Ong Shyue Ping, Hautier Geoffroy, Chen Wei, Richards William Davidson, Dacek Stephen, Cholia Shreyas, Gunter Dan, Skinner David, Ceder Gerbrand, Persson Kristin A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, 10.1063/1.4812323
- Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, 10.1016/0927-0256(96)00008-0
- Kresse G., Furthmüller J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, 10.1103/physrevb.54.11169
- Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
- Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
- Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Hybrid functionals based on a screened Coulomb potential, 10.1063/1.1564060
- Brothers Edward N., Izmaylov Artur F., Normand Jacques O., Barone Verónica, Scuseria Gustavo E., Accurate solid-state band gaps via screened hybrid electronic structure calculations, 10.1063/1.2955460
- Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., Allan D.C., First-principles computation of material properties: the ABINIT software project, 10.1016/s0927-0256(02)00325-7
- Gonze Xavier, A brief introduction to the ABINIT software package, 10.1524/zkri.220.5.558.65066
- Gonze X., Amadon B., Anglade P.-M., Beuken J.-M., Bottin F., Boulanger P., Bruneval F., Caliste D., Caracas R., Côté M., Deutsch T., Genovese L., Ghosez Ph., Giantomassi M., Goedecker S., Hamann D.R., Hermet P., Jollet F., Jomard G., Leroux S., Mancini M., Mazevet S., Oliveira M.J.T., Onida G., Pouillon Y., Rangel T., Rignanese G.-M., Sangalli D., Shaltaf R., Torrent M., Verstraete M.J., Zerah G., Zwanziger J.W., ABINIT: First-principles approach to material and nanosystem properties, 10.1016/j.cpc.2009.07.007
- Gonze X., Jollet F., Abreu Araujo F., Adams D., Amadon B., Applencourt T., Audouze C., Beuken J.-M., Bieder J., Bokhanchuk A., Bousquet E., Bruneval F., Caliste D., Côté M., Dahm F., Da Pieve F., Delaveau M., Di Gennaro M., Dorado B., Espejo C., Geneste G., Genovese L., Gerossier A., Giantomassi M., Gillet Y., Hamann D.R., He L., Jomard G., Laflamme Janssen J., Le Roux S., Levitt A., Lherbier A., Liu F., Lukačević I., Martin A., Martins C., Oliveira M.J.T., Poncé S., Pouillon Y., Rangel T., Rignanese G.-M., Romero A.H., Rousseau B., Rubel O., Shukri A.A., Stankovski M., Torrent M., Van Setten M.J., Van Troeye B., Verstraete M.J., Waroquiers D., Wiktor J., Xu B., Zhou A., Zwanziger J.W., Recent developments in the ABINIT software package, 10.1016/j.cpc.2016.04.003
- Hamann D. R., Optimized norm-conserving Vanderbilt pseudopotentials, 10.1103/physrevb.88.085117
- van Setten M.J., Giantomassi M., Bousquet E., Verstraete M.J., Hamann D.R., Gonze X., Rignanese G.-M., The PseudoDojo : Training and grading a 85 element optimized norm-conserving pseudopotential table, 10.1016/j.cpc.2018.01.012
- van Setten M. J., Giantomassi M., Gonze X., Rignanese G.-M., Hautier G., Automation methodologies and large-scale validation for
GW
: Towards high-throughput
GW
calculations, 10.1103/physrevb.96.155207
- Ong Shyue Ping, Richards William Davidson, Jain Anubhav, Hautier Geoffroy, Kocher Michael, Cholia Shreyas, Gunter Dan, Chevrier Vincent L., Persson Kristin A., Ceder Gerbrand, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, 10.1016/j.commatsci.2012.10.028
- Freysoldt Christoph, Grabowski Blazej, Hickel Tilmann, Neugebauer Jörg, Kresse Georg, Janotti Anderson, Van de Walle Chris G., First-principles calculations for point defects in solids, 10.1103/revmodphys.86.253
- Komsa Hannu-Pekka, Rantala Tapio T., Pasquarello Alfredo, Finite-size supercell correction schemes for charged defect calculations, 10.1103/physrevb.86.045112
- Zhang S., Northrup John, Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion, 10.1103/physrevlett.67.2339
- Freysoldt Christoph, Neugebauer Jörg, Van de Walle Chris G., Electrostatic interactions between charged defects in supercells, 10.1002/pssb.201046289
- Kumagai Yu, Oba Fumiyasu, Electrostatics-based finite-size corrections for first-principles point defect calculations, 10.1103/physrevb.89.195205
- Broberg Danny, Medasani Bharat, Zimmermann Nils E.R., Yu Guodong, Canning Andrew, Haranczyk Maciej, Asta Mark, Hautier Geoffroy, PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators, 10.1016/j.cpc.2018.01.004
- Madsen Georg K.H., Singh David J., BoltzTraP. A code for calculating band-structure dependent quantities, 10.1016/j.cpc.2006.03.007
- Jain Anubhav, Ong Shyue Ping, Chen Wei, Medasani Bharat, Qu Xiaohui, Kocher Michael, Brafman Miriam, Petretto Guido, Rignanese Gian-Marco, Hautier Geoffroy, Gunter Daniel, Persson Kristin A., FireWorks: a dynamic workflow system designed for high-throughput applications : FireWorks: A Dynamic Workflow System Designed for High-Throughput Applications, 10.1002/cpe.3505
- Noffsinger Jesse, Giustino Feliciano, Malone Brad D., Park Cheol-Hwan, Louie Steven G., Cohen Marvin L., EPW: A program for calculating the electron–phonon coupling using maximally localized Wannier functions, 10.1016/j.cpc.2010.08.027
- Poncé S., Margine E.R., Verdi C., Giustino F., EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions, 10.1016/j.cpc.2016.07.028
- Giannozzi Paolo, Baroni Stefano, Bonini Nicola, Calandra Matteo, Car Roberto, Cavazzoni Carlo, Ceresoli Davide, Chiarotti Guido L, Cococcioni Matteo, Dabo Ismaila, Dal Corso Andrea, de Gironcoli Stefano, Fabris Stefano, Fratesi Guido, Gebauer Ralph, Gerstmann Uwe, Gougoussis Christos, Kokalj Anton, Lazzeri Michele, Martin-Samos Layla, Marzari Nicola, Mauri Francesco, Mazzarello Riccardo, Paolini Stefano, Pasquarello Alfredo, Paulatto Lorenzo, Sbraccia Carlo, Scandolo Sandro, Sclauzero Gabriele, Seitsonen Ari P, Smogunov Alexander, Umari Paolo, Wentzcovitch Renata M, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, 10.1088/0953-8984/21/39/395502
- Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H-V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S, Advanced capabilities for materials modelling with Quantum ESPRESSO, 10.1088/1361-648x/aa8f79
- M. Giantomassi, Ph.D. thesis (2009)
- Hautier Geoffroy, Ong Shyue Ping, Jain Anubhav, Moore Charles J., Ceder Gerbrand, Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability, 10.1103/physrevb.85.155208
- Furukawa K., Uemoto A., Shigeta M., Suzuki A., Nakajima S., 3C‐SiCp‐njunction diodes, 10.1063/1.96860
- Kondo Y., Takahashi T., Ishi K., Hayashi Y., Sakuma E., Misawa S., Daimon H., Yamanaka M., Yoshida S., Experimental 3C-SiC MOSFET, 10.1109/edl.1986.26417
- Shibahara Kentaro, Kuroda Naotaka, Nishino Shigehiro, Matsunami Hiroyuki, Fabrication of P-N Junction Diodes Using Homoepitaxially Grown 6H-SiC at Low Temperature by Chemical Vapor Deposition, 10.1143/jjap.26.l1815
- Weingärtner R., Wellmann P. J., Bickermann M., Hofmann D., Straubinger T. L., Winnacker A., Determination of charge carrier concentration in n- and p-doped SiC based on optical absorption measurements, 10.1063/1.1430262
- Choyke W.J., Pensl G., Physical Properties of SiC, 10.1557/s0883769400032723
- Morkoç H., Strite S., Gao G. B., Lin M. E., Sverdlov B., Burns M., Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies, 10.1063/1.358463
- Philipp Hekrert R., Intrinsic Optical Absorption in Single-Crystal Silicon Carbide, 10.1103/physrev.111.440
- Liu Mingzhen, Johnston Michael B., Snaith Henry J., Efficient planar heterojunction perovskite solar cells by vapour deposition, 10.1038/nature12509
- Green Martin A., Ho-Baillie Anita, Snaith Henry J., The emergence of perovskite solar cells, 10.1038/nphoton.2014.134
- Ha Viet-Anh, Ricci Francesco, Rignanese Gian-Marco, Hautier Geoffroy, Structural design principles for low hole effective mass s-orbital-based p-type oxides, 10.1039/c7tc00528h
- Saum George A., Hensley Eugene B., Fundamental Optical Absorption in the IIA-VIB Compounds, 10.1103/physrev.113.1019
- Richardson T, New electrochromic mirror systems, 10.1016/j.ssi.2003.08.047
- Gobrecht R., Photoelektrische Eigenschaften von Lithiumantimonid, 10.1002/pssb.19660130215
- Noffsinger Jesse, Kioupakis Emmanouil, Van de Walle Chris G., Louie Steven G., Cohen Marvin L., Phonon-Assisted Optical Absorption in Silicon from First Principles, 10.1103/physrevlett.108.167402
- Quackenbush N. F., Allen J. P., Scanlon D. O., Sallis S., Hewlett J. A., Nandur A. S., Chen B., Smith K. E., Weiland C., Fischer D. A., Woicik J. C., White B. E., Watson G. W., Piper L. F. J., Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory, 10.1021/cm401343a
- Hautier Geoffroy, Miglio Anna, Waroquiers David, Rignanese Gian-Marco, Gonze Xavier, How Does Chemistry Influence Electron Effective Mass in Oxides? A High-Throughput Computational Analysis, 10.1021/cm404079a
- Kuhar Korina, Pandey Mohnish, Thygesen Kristian S., Jacobsen Karsten W., High-Throughput Computational Assessment of Previously Synthesized Semiconductors for Photovoltaic and Photoelectrochemical Devices, 10.1021/acsenergylett.7b01312
- Tate J., Ju H. L., Moon J. C., Zakutayev A., Richard A. P., Russell J., McIntyre D. H., Origin ofp-type conduction in single-crystalCuAlO2, 10.1103/physrevb.80.165206
- Ogo Yoichi, Hiramatsu Hidenori, Nomura Kenji, Yanagi Hiroshi, Kamiya Toshio, Hirano Masahiro, Hosono Hideo, p-channel thin-film transistor using p-type oxide semiconductor, SnO, 10.1063/1.2964197
- E. Maciá-Barber, Thermoelectric Materials: Advances and Applications (2015)
- T. Kajikawa, Proceedings ICT'03: 22nd International Conference on Thermoelectrics (2003)
- Condron Cathie L., Kauzlarich Susan M., Gascoin Franck, Snyder G. Jeffrey, Thermoelectric properties and microstructure of Mg3Sb2, 10.1016/j.jssc.2006.01.034
- Zhang Jiawei, Song Lirong, Mamakhel Aref, Jørgensen Mads Ry Vogel, Iversen Bo Brummerstedt, High-Performance Low-Cost n-Type Se-Doped Mg3Sb2-Based Zintl Compounds for Thermoelectric Application, 10.1021/acs.chemmater.7b01746
- Zunger Alex, Practical doping principles, 10.1063/1.1584074
Bibliographic reference |
Ha, Viet Anh ; Yu, Guodong ; Ricci, Francesco ; Dahliah, Diana ; van Setten, Michiel ; et. al. Computationally driven high-throughput identification of CaTe and Li3Sb as promising candidates for high-mobility p
-type transparent conducting materials. In: Physical Review Materials, Vol. 3, no.3, p. 034601 (2019) |
Permanent URL |
http://hdl.handle.net/2078.1/214712 |