User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability

  • Open access
  • PDF
  • 2.03 M
  • Open access
  • PDF
  • 2.09 M
  1. Alexandre Anne, Meunier Jean-Dominique, Colin Fabrice, Koud Jean-Mathias, Plant impact on the biogeochemical cycle of silicon and related weathering processes, 10.1016/s0016-7037(97)00001-x
  2. Bartoli F., Wilding L. P., Dissolution of Biogenic Opal as a Function of its Physical and Chemical Properties1, 10.2136/sssaj1980.03615995004400040043x
  3. Belanger Richard R., Soluble Silicon: Its Role in Crop and Disease Management of Greenhouse Crops, 10.1094/pd-79-0329
  4. Berthelsen S, Noble AD, Garside AL (2001) Silicon research down under: past, present, and future. In Studies in Plant Science, vol 8. Elsevier, pp 241–255
  5. Biederman Lori A., Harpole W. Stanley, Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis, 10.1111/gcbb.12037
  6. Chao T, Sanzolone R (1992) Decomposition techniques. J Geochem Explor 44:65–106
  7. Chapman HD (1965) Cation-exchange capacity. In: Black CA et al. (eds) Methods of soil analysis. Part 2, Chemical and microbiological properties. Agronomy, Madison, pp. 891-901
  8. Cornelis JT, Delvaux B (2016) Soil processes drive the biological silicon feedback loop. Funct Ecol 30:1298–1310
  9. Cornelis Jean-Thomas, Titeux Hugues, Ranger Jacques, Delvaux Bruno, Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species, 10.1007/s11104-010-0702-x
  10. Corrales Isabel, Poschenrieder Charlotte, Barceló Juan, 10.1023/a:1004209828791
  11. Datnoff LE, Heckman JR (2014) Silicon fertilizers for plant disease protection. World Fertilizer Congress
  12. Delstanche S., Opfergelt S., Cardinal D., Elsass F., André L., Delvaux B., Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide, 10.1016/j.gca.2008.11.014
  13. DeMaster David J., The supply and accumulation of silica in the marine environment, 10.1016/0016-7037(81)90006-5
  14. Epstein E., The anomaly of silicon in plant biology., 10.1073/pnas.91.1.11
  15. Exley Christopher, Silicon in life:A bioinorganic solution to bioorganic essentiality1JD Birchall memorial lecture.1, 10.1016/s0162-0134(97)10010-1
  16. Farmer V.C., Significance of the presence of allophane and imogolite in podzol bs horizons for podzolization mechanisms: A review, 10.1080/00380768.1982.10432397
  17. Fraysse Fabrice, Pokrovsky Oleg S., Schott Jacques, Meunier Jean-Dominique, Surface properties, solubility and dissolution kinetics of bamboo phytoliths, 10.1016/j.gca.2005.12.025
  18. Fraysse Fabrice, Pokrovsky Oleg S., Schott Jacques, Meunier Jean-Dominique, Surface chemistry and reactivity of plant phytoliths in aqueous solutions, 10.1016/j.chemgeo.2008.10.003
  19. Garrels RM, Christ CL (1965) Solutions, minerals, and equilibria. Harper Row, New York, p. 46
  20. Gérard F., Mayer K.U., Hodson M.J., Ranger J., Modelling the biogeochemical cycle of silicon in soils: Application to a temperate forest ecosystem, 10.1016/j.gca.2007.11.010
  21. Glaser Bruno, Lehmann Johannes, Zech Wolfgang, Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review, 10.1007/s00374-002-0466-4
  22. Guntzer Flore, Keller Catherine, Poulton Paul R., McGrath Steve P., Meunier Jean-Dominique, Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted, 10.1007/s11104-011-0987-4
  23. Hardy B., Cornelis J.-T., Houben D., Lambert R., Dufey J. E., The effect of pre-industrial charcoal kilns on chemical properties of forest soil of Wallonia, Belgium : Effect of pre-industrial charcoal kilns on forest soil properties, 10.1111/ejss.12324
  24. Haynes Richard J., A contemporary overview of silicon availability in agricultural soils, 10.1002/jpln.201400202
  25. Haynes Richard J., The nature of biogenic Si and its potential role in Si supply in agricultural soils, 10.1016/j.agee.2017.04.021
  26. Haynes Richard J., What effect does liming have on silicon availability in agricultural soils?, 10.1016/j.geoderma.2018.09.026
  27. Haynes Richard J., Belyaeva O. N., Kingston G., Evaluation of industrial wastes as sources of fertilizer silicon using chemical extractions and plant uptake, 10.1002/jpln.201200372
  28. Haysom M, Chapman L (1975) Some aspects of the calcium silicate trials at Mackay. Proceedings
  29. Henriet C., Draye X., Oppitz I., Swennen R., Delvaux B., Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions, 10.1007/s11104-006-9085-4
  30. Henriet C., Bodarwé L., Dorel M., Draye X., Delvaux B., Leaf silicon content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe, 10.1007/s11104-008-9680-7
  31. Henriet C., De Jaeger N., Dorel M., Opfergelt S., Delvaux B., The reserve of weatherable primary silicates impacts the accumulation of biogenic silicon in volcanic ash soils, 10.1007/s10533-008-9245-0
  32. Herbillon A (1986) Chemical estimation of weatherable minerals present in the diagnostic horizons of low activity clay soils. Proceedings of the 8th International Clay Classification Workshop: Classification, Characterization and Utilization of Oxisols (part 1)[Beinroth, FH, Camargo, MN and Eswaran (ed)][39–48](Rio de Janeiro, 1986)
  33. Hinsinger P., How Do Plant Roots Acquire Mineral Nutrients? Chemical Processes Involved in the Rhizosphere, Advances in Agronomy (1998) ISBN:9780120007646 p.225-265, 10.1016/s0065-2113(08)60506-4
  34. Houben David, Sonnet Philippe, Cornelis Jean-Thomas, Biochar from Miscanthus: a potential silicon fertilizer, 10.1007/s11104-013-1885-8
  35. IUSS (2014) World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps. FAO, Rome
  36. Jeffery S., Verheijen F.G.A., van der Velde M., Bastos A.C., A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis, 10.1016/j.agee.2011.08.015
  37. Jones L. H. P., Handreck K. A., Studies of silica in the oat plant : III. Uptake of silica from soils by the plant, 10.1007/bf01349120
  38. Keeping Malcolm G., Uptake of Silicon by Sugarcane from Applied Sources May Not Reflect Plant-Available Soil Silicon and Total Silicon Content of Sources, 10.3389/fpls.2017.00760
  39. Keeping MG, Miles N, Rutherford RS (2017) Liming an acid soil treated with diverse silicon sources: effects on silicon uptake by sugarcane (Saccharum spp. hybrids). J Plant Nutr 41:273–287
  40. Keller Catherine, Guntzer Flore, Barboni Doris, Labreuche Jérôme, Meunier Jean-Dominique, Impact of agriculture on the Si biogeochemical cycle: Input from phytolith studies, 10.1016/j.crte.2012.10.004
  41. Kelly EF (1990) Methods for extracting opal Phytoliths from soil and plant material. Document of the Department of Agronomy, Colorado State University
  42. Kittrick, J. A. (1977). Mineral equilibria and the soil system. In: Dixon JB and Weed SB (eds) Minerals in Soil Environments. Soil Sci Soc Am, pp. 1–25
  43. Klotzbücher T, Marxen A, Vetterlein D, Schneiker J, Türke M, van Sinh N, Manh NH, van Chien H, Marquez L, Villareal S (2015) Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl Ecol 16:665–673
  44. Klotzbücher T., Marxen A., Jahn R., Vetterlein D., Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoils and plant silicon uptake, 10.1007/s10705-016-9782-1
  45. Klotzbücher Thimo, Klotzbücher Anika, Kaiser Klaus, Merbach Ines, Mikutta Robert, Impact of agricultural practices on plant-available silicon, 10.1016/j.geoderma.2018.06.011
  46. Koning Erica, Epping Eric, Van Raaphorst Wim, 10.1023/a:1020318610178
  47. Korndörfer G. H., Coelho N. M., Snyder G. H., Mizutani C. T., Avaliação de métodos de extração de silício em solos cultivados com arroz de sequeiro, 10.1590/s0100-06831999000100013
  48. Laird David A., Fleming Pierce, Davis Dedrick D., Horton Robert, Wang Baiqun, Karlen Douglas L., Impact of biochar amendments on the quality of a typical Midwestern agricultural soil, 10.1016/j.geoderma.2010.05.013
  49. Lehmann Johannes, Biochar for Environmental Management : Science, Technology and Implementation, ISBN:9780203762264, 10.4324/9780203762264
  50. Lehmann Johannes, Pereira da Silva Jr. Jose, Steiner Christoph, Nehls Thomas, Zech Wolfgang, Glaser Bruno, 10.1023/a:1022833116184
  51. Li Zimin, Delvaux Bruno, Yans Johan, Dufour Nicolas, Houben David, Cornelis Jean-Thomas, Phytolith-rich biochar increases cotton biomass and silicon-mineralomass in a highly weathered soil, 10.1002/jpln.201800031
  52. Liang Yong Chao, Ma Tong Sheng, Li Fu Jun, Feng Ya Jun, Silicon availability and response of rice and wheat to silicon in calcareous soils, 10.1080/00103629409369189
  53. Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O'Neill B., Skjemstad J. O., Thies J., Luizão F. J., Petersen J., Neves E. G., Black Carbon Increases Cation Exchange Capacity in Soils, 10.2136/sssaj2005.0383
  54. Liang Yongchao, Sun Wanchun, Zhu Yong-Guan, Christie Peter, Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review, 10.1016/j.envpol.2006.06.008
  55. Liang Yongchao, Nikolic Miroslav, Bélanger Richard, Gong Haijun, Song Alin, Silicon in Agriculture, ISBN:9789401799775, 10.1007/978-94-017-9978-2
  56. Liu Xiaoyu, Zhang Afeng, Ji Chunying, Joseph Stephen, Bian Rongjun, Li Lianqing, Pan Genxing, Paz-Ferreiro Jorge, Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data, 10.1007/s11104-013-1806-x
  57. Liu Xiaoyu, Li Lianqing, Bian Rongjun, Chen De, Qu Jingjing, Wanjiru Kibue Grace, Pan Genxing, Zhang Xuhui, Zheng Jinwei, Zheng Jufeng, Effect of biochar amendment on soil-silicon availability and rice uptake, 10.1002/jpln.201200582
  58. Lucas Y, The Role of Plants in Controlling Rates and Products of Weathering: Importance of Biological Pumping, 10.1146/
  59. Lucas Y., Luizao F. J., Chauvel A., Rouiller J., Nahon D., The Relation Between Biological Activity of the Rain Forest and Mineral Composition of Soils, 10.1126/science.260.5107.521
  60. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam
  61. Ma Jian Feng, Tamai Kazunori, Yamaji Naoki, Mitani Namiki, Konishi Saeko, Katsuhara Maki, Ishiguro Masaji, Murata Yoshiko, Yano Masahiro, A silicon transporter in rice, 10.1038/nature04590
  63. Dominique Meunier Jean, Colin Fabrice, Alarcon Charles, Biogenic silica storage in soils, 10.1130/0091-7613(1999)027<0835:bssis>;2
  64. Meunier J. D., Guntzer F., Kirman S., Keller C., Terrestrial plant-Si and environmental changes, 10.1180/minmag.2008.072.1.263
  65. Meunier Jean-Dominique, Sandhya Kollalu, Prakash Nagabovanalli B., Borschneck Daniel, Dussouillez Philippe, pH as a proxy for estimating plant-available Si? A case study in rice fields in Karnataka (South India), 10.1007/s11104-018-3758-7
  66. Miles Neil, Manson Alan David, Rhodes Ruth, van Antwerpen Rianto, Weigel Annett, Extractable Silicon in Soils of the South African Sugar Industry and Relationships with Crop Uptake, 10.1080/00103624.2014.956881
  67. Neu Silke, Schaller Jörg, Dudel E. Gert, Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry and productivity of winter wheat (Triticum aestivum L.), 10.1038/srep40829
  68. Riotte Jean, Sandhya Kollalu, Prakash Nagabovanalli B., Audry Stéphane, Zambardi Thomas, Chmeleff Jérôme, Buvaneshwari Sriramulu, Meunier Jean-Dominique, Origin of silica in rice plants and contribution of diatom Earth fertilization: insights from isotopic Si mass balance in a paddy field, 10.1007/s11104-017-3535-z
  69. Rondon Marco A., Lehmann Johannes, Ramírez Juan, Hurtado Maria, Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions, 10.1007/s00374-006-0152-z
  70. Ronsse Frederik, van Hecke Sven, Dickinson Dane, Prins Wolter, Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions, 10.1111/gcbb.12018
  71. Saccone L., Conley D.J., Sauer D., Methodologies for amorphous silica analysis, 10.1016/j.gexplo.2005.08.045
  72. Sauer Daniela, Saccone Loredana, Conley Daniel J., Herrmann Ludger, Sommer Michael, Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments, 10.1007/s10533-005-5879-3
  73. SMITHSON FRANK, Plant Opal in Soil, 10.1038/178107a0
  74. Sohi S.P., Krull E., Lopez-Capel E., Bol R., A Review of Biochar and Its Use and Function in Soil, Advances in Agronomy (2010) ISBN:9780123810236 p.47-82, 10.1016/s0065-2113(10)05002-9
  75. Sommer M., Jochheim H., Höhn A., Breuer J., Zagorski Z., Busse J., Barkusky D., Meier K., Puppe D., Wanner M., Kaczorek D., Si cycling in a forest biogeosystem &ndash; the importance of transient state biogenic Si pools, 10.5194/bg-10-4991-2013
  76. Song Zhaoliang, Wang Hailong, Strong Peter James, Shan Shengdao, Increase of available soil silicon by Si-rich manure for sustainable rice production, 10.1007/s13593-013-0202-5
  77. Thiry Médard, Quesnel Florence, Yans Johan, Wyns Robert, Vergari Anne, Theveniaut Hervé, Simon-Coinçon Régine, Ricordel Caroline, Moreau Marie-Gabrielle, Giot Denis, Dupuis Christian, Bruxelles Laurent, Barbarand Jocelyn, Baele Jean-Marc, Continental France and Belgium during the early Cretaceous: paleoweatherings and paleolandforms, 10.2113/gssgfbull.177.3.155
  78. Titeux Hugues, Delvaux Bruno, Experimental study of DOC, nutrients and metals release from forest floors developed under beech (Fagus sylvatica L.) on a Cambisol and a Podzol, 10.1016/j.geoderma.2008.10.013
  79. Unzué-Belmonte Dácil, Struyf Eric, Clymans Wim, Tischer Alexander, Potthast Karin, Bremer Martina, Meire Patrick, Schaller Jörg, Fire enhances solubility of biogenic silica, 10.1016/j.scitotenv.2015.12.085
  80. Vandevenne Floor, Struyf Eric, Clymans Wim, Meire Patrick, Agricultural silica harvest: have humans created a new loop in the global silica cycle?, 10.1890/110046
  81. Wang Meng, Wang Jim J., Wang Xudong, Effect of KOH-enhanced biochar on increasing soil plant-available silicon, 10.1016/j.geoderma.2018.02.001
  82. Xiao Xin, Chen Baoliang, Zhu Lizhong, Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures, 10.1021/es405676h
  83. Yamato Masahide, Okimori Yasuyuki, Wibowo Irhas Fredy, Anshori Saifuddin, Ogawa Makoto, Effects of the application of charred bark ofAcacia mangiumon the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia, 10.1111/j.1747-0765.2006.00065.x
  84. Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Los Baños, Laguna, Philippines
Bibliographic reference Li, Zimin ; Unzué-Belmonte, Dácil ; Cornelis, Jean-Thomas ; Vander Linden, Charles ; Struyf, Eric ; et. al. Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. In: Plant and Soil, Vol. 438, no. 1-2, p. 187-203 (2019)
Permanent URL