User menu

Probing Leptogenesis at Future Colliders

  • Open access
  • PDF
  • 6.25 M
  1. Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [ INSPIRE ].
  2. de Gouvêa André, Seesaw energy scale and the LSND anomaly, 10.1103/physrevd.72.033005
  3. Asaka Takehiko, Tsuyuki Takanao, Perturbativity in the seesaw mechanism, 10.1016/j.physletb.2015.12.013
  4. DREWES MARCO, THE PHENOMENOLOGY OF RIGHT HANDED NEUTRINOS, 10.1142/s0218301313300191
  5. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421 [ INSPIRE ].
  6. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [ arXiv:1306.4669 ] [ INSPIRE ].
  7. Mohapatra Rabindra N., Senjanović Goran, Neutrino Mass and Spontaneous Parity Nonconservation, 10.1103/physrevlett.44.912
  8. Yanagida T., Horizontal Symmetry and Masses of Neutrinos, 10.1143/ptp.64.1103
  9. Schechter J., Valle J. W. F., Neutrino masses in SU(2) ⊗ U(1) theories, 10.1103/physrevd.22.2227
  10. Schechter J., Valle J. W. F., Neutrino decay and spontaneous violation of lepton number, 10.1103/physrevd.25.774
  11. Iso Satoshi, Okada Nobuchika, Orikasa Yuta, Classically conformal B – L extended Standard Model, 10.1016/j.physletb.2009.04.046
  12. S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scale — in view of the hierarchy problem —, PTEP 2013 (2013) 023B08 [ arXiv:1210.2848 ] [ INSPIRE ].
  13. Khoze Valentin V., Ro Gunnar, Leptogenesis and neutrino oscillations in the classically conformal standard model with the Higgs portal, 10.1007/jhep10(2013)075
  14. Khoze Valentin V., Plascencia Alexis D., Dark matter and leptogenesis linked by classical scale invariance, 10.1007/jhep11(2016)025
  15. Antusch Stefan, Fischer Oliver, Testing sterile neutrino extensions of the Standard Model at future lepton colliders, 10.1007/jhep05(2015)053
  16. Asaka Takehiko, Blanchet Steve, Shaposhnikov Mikhail, The νMSM, dark matter and neutrino masses, 10.1016/j.physletb.2005.09.070
  17. Asaka Takehiko, Shaposhnikov Mikhail, The νMSM, dark matter and baryon asymmetry of the universe, 10.1016/j.physletb.2005.06.020
  18. Shaposhnikov Mikhail, A possible symmetry of the, 10.1016/j.nuclphysb.2006.11.003
  19. Wyler D., Wolfenstein L., Massless neutrinos in left-hand symmetric models, 10.1016/0550-3213(83)90482-0
  20. Mohapatra R. N., Valle J. W. F., Neutrino mass and baryon-number nonconservation in superstring models, 10.1103/physrevd.34.1642
  21. Mohapatra Rabindra N., Mechanism for understanding small neutrino mass in superstring theories, 10.1103/physrevlett.56.561
  22. Gonzalez-Garcia M.C., Valle J.W.F., Fast decaying neutrinos and observable flavour violation in a new class of majoron models, 10.1016/0370-2693(89)91131-3
  23. Akhmedov Eugeni, Lindner Manfred, Schnapka Erhard, Valle Jose W. F., Dynamical left-right symmetry breaking, 10.1103/physrevd.53.2752
  24. Akhmedov Eugeni, Lindner Manfred, Schnapka Erhard, Valle JoséW.F., Left-right symmetry breaking in NJL approach, 10.1016/0370-2693(95)01504-3
  25. Barr S. M., New Type of Seesaw Mechanism for Neutrino Masses, 10.1103/physrevlett.92.101601
  26. Malinský M., Romão J. C., Valle J. W. F., Supersymmetric SO(10) Seesaw Mechanism with LowB−LScale, 10.1103/physrevlett.95.161801
  27. Bernabéu J., Santamaria A., Vidal J., Mendez A., Valle J.W.F., Lepton flavour non-conservation at high energies in a superstring inspired standard model, 10.1016/0370-2693(87)91100-2
  28. Pilaftsis Apostolos, Radiatively induced neutrino masses and large Higgs-neutrino couplings in the Standard Model with Majorana fields, 10.1007/bf01482590
  29. Abada Asmaa, Biggio Carla, Bonnet Florian, Gavela Maria B, Hambye Thomas, Low energy effects of neutrino masses, 10.1088/1126-6708/2007/12/061
  30. Sierra D. Aristizabal, Degee A., Kamenik J. F., Minimal lepton flavor violating realizations of minimal seesaw models, 10.1007/jhep07(2012)135
  31. C.S. Fong, M.C. Gonzalez-Garcia, E. Nardi and E. Peinado, New ways to TeV scale leptogenesis, JHEP 08 (2013) 104 [ arXiv:1305.6312 ] [ INSPIRE ].
  32. Cirigliano Vincenzo, Grinstein Benjamín, Isidori Gino, Wise Mark B., Minimal flavor violation in the lepton sector, 10.1016/j.nuclphysb.2005.08.037
  33. Gavela M.B, Hambye T, Hernández D, Hernández P, Minimal flavour seesaw models, 10.1088/1126-6708/2009/09/038
  34. R. Ruiz, QCD Corrections to Pair Production of Type III Seesaw Leptons at Hadron Colliders, JHEP 12 (2015) 165 [ arXiv:1509.05416 ] [ INSPIRE ].
  35. Degrande Céline, Mattelaer Olivier, Ruiz Richard, Turner Jessica, Fully automated precision predictions for heavy neutrino production mechanisms at hadron colliders, 10.1103/physrevd.94.053002
  36. Lindner Manfred, Queiroz Farinaldo S., Rodejohann Werner, Yaguna Carlos E., Left-right symmetry and lepton number violation at the Large Hadron electron Collider, 10.1007/jhep06(2016)140
  37. Kuzmin V.A., Rubakov V.A., Shaposhnikov M.E., On anomalous electroweak baryon-number non-conservation in the early universe, 10.1016/0370-2693(85)91028-7
  38. Fukugita M., Yanagida T., Barygenesis without grand unification, 10.1016/0370-2693(86)91126-3
  39. Canetti Laurent, Drewes Marco, Shaposhnikov Mikhail, Matter and antimatter in the universe, 10.1088/1367-2630/14/9/095012
  40. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [ arXiv:1502.01589 ] [ INSPIRE ].
  41. Davidson Sacha, Ibarra Alejandro, A lower bound on the right-handed neutrino mass from leptogenesis, 10.1016/s0370-2693(02)01735-5
  42. A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [ hep-ph/0309342 ] [ INSPIRE ].
  43. Asaka Takehiko, Blanchet Steve, Leptogenesis with an almost conserved lepton number, 10.1103/physrevd.78.123527
  44. Racker J, Peña Manuel, Rius Nuria, Leptogenesis with small violation ofB−L, 10.1088/1475-7516/2012/07/030
  45. D’Onofrio Michela, Rummukainen Kari, Tranberg Anders, Sphaleron Rate in the Minimal Standard Model, 10.1103/physrevlett.113.141602
  46. Akhmedov E. Kh., Rubakov V. A., Smirnov A. Yu., Baryogenesis via Neutrino Oscillations, 10.1103/physrevlett.81.1359
  47. Hambye Thomas, Teresi Daniele, Higgs Doublet Decay as the Origin of the Baryon Asymmetry, 10.1103/physrevlett.117.091801
  48. Hambye Thomas, Teresi Daniele, Baryogenesis from L -violating Higgs-doublet decay in the density-matrix formalism, 10.1103/physrevd.96.015031
  49. TLEP Design Study Working Group collaboration, M. Bicer et al., First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [ arXiv:1308.6176 ] [ INSPIRE ].
  50. CEPC-SPPC Study Group, CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector, IHEP-CEPC-DR-2015-01 (2015).
  51. H. Baer et al., The International Linear Collider Technical Design Report — Volume 2: Physics, arXiv:1306.6352 [ INSPIRE ].
  52. ILC Parameters Joint Working Group collaboration, J.E. Brau et al., 500 GeV ILC Operating Scenarios, in Proceedings, Meeting of the APS Division of Particles and Fields (DPF 2015), Ann Arbor U.S.A. (2015) [ arXiv:1510.05739 ] [ INSPIRE ].
  53. T. Spadaro, Perspectives from the NA62 experiment, talk given at the PBC Kickoff Meeting, CERN, Geneva Switzerland (2016).
  54. NA62 collaboration, E. Cortina Gil et al., Search for heavy neutral lepton production in K+ decays, Phys. Lett. B 778 (2018) 137 [ arXiv:1712.00297 ] [ INSPIRE ].
  55. Drewes Marco, Hajer Jan, Klaric Juraj, Lanfranchi Gaia, NA62 sensitivity to heavy neutral leptons in the low scale seesaw model, 10.1007/jhep07(2018)105
  56. SHiP collaboration, E. Graverini, N. Serra and B. Storaci, Search for New Physics in SHiP and at future colliders, 2015 JINST 10 C07007 [ arXiv:1503.08624 ] [ INSPIRE ].
  57. SHiP collaboration, E. Graverini, SHiP sensitivity to Heavy Neutral Leptons, CERN-SHiP-NOTE-2016-003 (2016).
  58. Antusch Stefan, Cazzato Eros, Fischer Oliver, Sterile neutrino searches via displaced vertices at LHCb, 10.1016/j.physletb.2017.09.057
  59. Kersten Jörn, Smirnov Alexei Yu., Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, 10.1103/physrevd.76.073005
  60. del Aguila F., Aguilar-Saavedra J.A., Distinguishing seesaw models at LHC with multi-lepton signals, 10.1016/j.nuclphysb.2008.12.029
  61. Atre Anupama, Han Tao, Pascoli Silvia, Zhang Bin, The search for heavy Majorana neutrinos, 10.1088/1126-6708/2009/05/030
  62. Dev P. S. Bhupal, Franceschini Roberto, Mohapatra R. N., Bounds on TeV seesaw models from LHC Higgs data, 10.1103/physrevd.86.093010
  63. Gago Alberto M., Hernández Pilar, Jones-Pérez Joel, Losada Marta, Moreno Briceño Alexander, Probing the Type I Seesaw mechanism with displaced vertices at the LHC, 10.1140/epjc/s10052-015-3693-1
  64. Das Arindam, Okada Nobuchika, Inverse seesaw neutrino signatures at the LHC and ILC, 10.1103/physrevd.88.113001
  65. Anamiati G., Hirsch M., Nardi E., Quasi-Dirac neutrinos at the LHC, 10.1007/jhep10(2016)010
  66. P.S.B. Dev, D. Kim and R.N. Mohapatra, Disambiguating Seesaw Models using Invariant Mass Variables at Hadron Colliders, JHEP 01 (2016) 118 [ arXiv:1510.04328 ] [ INSPIRE ].
  67. R.E. Ruiz, Hadron Collider Tests of Neutrino Mass-Generating Mechanisms, Ph.D. Thesis, Pittsburgh University, Pittsburgh U.S.A. (2015) [ arXiv:1509.06375 ] [ INSPIRE ].
  68. Das Arindam, Okada Nobuchika, Improved bounds on the heavy neutrino productions at the LHC, 10.1103/physrevd.93.033003
  69. Das Arindam, Okada Nobuchika, Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches, 10.1016/j.physletb.2017.09.042
  70. Das Arindam, Konar Partha, Majhi Swapan, Production of heavy neutrino in next-to-leading order QCD at the LHC and beyond, 10.1007/jhep06(2016)019
  71. A. Das, Pair production of heavy neutrinos in next-to-leading order QCD at the hadron colliders in the inverse seesaw framework, arXiv:1701.04946 [ INSPIRE ].
  72. Chen Chien-Yi, Dev P. S. Bhupal, Multilepton collider signatures of heavy Dirac and Majorana neutrinos, 10.1103/physrevd.85.093018
  73. Asaka Takehiko, Tsuyuki Takanao, Seesaw mechanism at electron-electron colliders, 10.1103/physrevd.92.094012
  74. Banerjee Shankha, Dev P. S. Bhupal, Ibarra Alejandro, Mandal Tanumoy, Mitra Manimala, Prospects of heavy neutrino searches at future lepton colliders, 10.1103/physrevd.92.075002
  75. S. Antusch, E. Cazzato and O. Fischer, Higgs production from sterile neutrinos at future lepton colliders, JHEP 04 (2016) 189 [ arXiv:1512.06035 ] [ INSPIRE ].
  76. Abada A., Bečirević D., Lucente M., Sumensari O., Lepton flavor violating decays of vector quarkonia and of theZboson, 10.1103/physrevd.91.113013
  77. Helo J. C., Kovalenko S. G., Hirsch M., Heavy neutrino searches at the LHC with displaced vertices, 10.1103/physrevd.89.073005
  78. Izaguirre Eder, Shuve Brian, Multilepton and lepton jet probes of sub-weak-scale right-handed neutrinos, 10.1103/physrevd.91.093010
  79. Dib Claudio O., Kim C. S., Discovering sterile neutrinos lighter thanMWat the LHC, 10.1103/physrevd.92.093009
  80. Dib Claudio O., Kim C. S., Wang Kechen, Zhang Jue, Distinguishing Dirac/Majorana sterile neutrinos at the LHC, 10.1103/physrevd.94.013005
  81. Cottin Giovanna, Helo Juan Carlos, Hirsch Martin, Displaced vertices as probes of sterile neutrino mixing at the LHC, 10.1103/physrevd.98.035012
  82. A. Abada, N. Bernal, M. Losada and X. Marcano, Inclusive Displaced Vertex Searches for Heavy Neutral Leptons at the LHC, arXiv:1807.10024 [ INSPIRE ].
  83. Kling Felix, Trojanowski Sebastian, Heavy neutral leptons at FASER, 10.1103/physrevd.97.095016
  84. Helo Juan Carlos, Hirsch Martin, Wang Zeren Simon, Heavy neutral fermions at the high-luminosity LHC, 10.1007/jhep07(2018)056
  85. D. Curtin et al., Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case, arXiv:1806.07396 [ INSPIRE ].
  86. M. Lucente, A. Abada, G. Arcadi, V. Domcke, M. Drewes and J. Klaric, Low-scale leptogenesis with 3 right-handed neutrinos, https://zenodo.org/record/1289773 (2018).
  87. Canetti Laurent, Drewes Marco, Garbrecht Björn, Probing leptogenesis with GeV-scale sterile neutrinos at LHCb and Belle II, 10.1103/physrevd.90.125005
  88. Blondel A., Graverini E., Serra N., Shaposhnikov M., Search for Heavy Right Handed Neutrinos at the FCC-ee, 10.1016/j.nuclphysbps.2015.09.304
  89. Antusch Stefan, Fischer Oliver, Testing sterile neutrino extensions of the Standard Model at the Circular Electron Positron Collider, 10.1142/s0217751x15440042
  90. Antusch Stefan, Cazzato Eros, Fischer Oliver, Displaced vertex searches for sterile neutrinos at future lepton colliders, 10.1007/jhep12(2016)007
  91. Antusch Stefan, Cazzato Eros, Fischer Oliver, Sterile neutrino searches at future e−e+, pp and e−p colliders, 10.1142/s0217751x17500786
  92. Abada A., De Romeri V., Monteil S., Orloff J., Teixeira A. M., Indirect searches for sterile neutrinos at a high-luminosity Z-factory, 10.1007/jhep04(2015)051
  93. Caputo A., Hernandez P., Kekic M., López-Pavón J., Salvado J., The seesaw path to leptonic CP violation, 10.1140/epjc/s10052-017-4823-8
  94. Canetti Laurent, Shaposhnikov Mikhail, Baryon asymmetry of the Universe in the νMSM, 10.1088/1475-7516/2010/09/001
  95. Canetti Laurent, Drewes Marco, Shaposhnikov Mikhail, Sterile Neutrinos as the Origin of Dark and Baryonic Matter, 10.1103/physrevlett.110.061801
  96. Canetti Laurent, Drewes Marco, Frossard Tibor, Shaposhnikov Mikhail, Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos, 10.1103/physrevd.87.093006
  97. Hernández P., Kekic M., López-Pavón J., Racker J., Rius N., Leptogenesis in GeV-scale seesaw models, 10.1007/jhep10(2015)067
  98. Abada Asmaa, Arcadi Giorgio, Domcke Valerie, Lucente Michele, Lepton number violation as a key to low-scale leptogenesis, 10.1088/1475-7516/2015/11/041
  99. P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable Baryogenesis in Seesaw Models, JHEP 08 (2016) 157 [ arXiv:1606.06719 ] [ INSPIRE ].
  100. Drewes Marco, Garbrecht Björn, Gueter Dario, Klarić Juraj, Leptogenesis from oscillations of heavy neutrinos with large mixing angles, 10.1007/jhep12(2016)150
  101. Drewes Marco, Garbrecht Björn, Gueter Dario, Klarić Juraj, Testing the low scale seesaw and leptogenesis, 10.1007/jhep08(2017)018
  102. Abada Asmaa, Arcadi Giorgio, Domcke Valerie, Lucente Michele, Neutrino masses, leptogenesis and dark matter from small lepton number violation?, 10.1088/1475-7516/2017/12/024
  103. Drewes Marco, Garbrecht Björn, Leptogenesis from a GeV seesaw without mass degeneracy, 10.1007/jhep03(2013)096
  104. Drewes Marco, Eijima Shintaro, Neutrinoless double β decay and low scale leptogenesis, 10.1016/j.physletb.2016.09.054
  105. Asaka Takehiko, Eijima Shintaro, Ishida Hiroyuki, On neutrinoless double beta decay in the νMSM, 10.1016/j.physletb.2016.09.044
  106. Asaka Takehiko, Eijima Shintaro, Ishida Hiroyuki, Minogawa Kosuke, Yoshii Tomoya, Initial condition for baryogenesis via neutrino oscillation, 10.1103/physrevd.96.083010
  107. Ghiglieri J., Laine M., GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations, 10.1007/jhep05(2017)132
  108. Eijima Shintaro, Shaposhnikov Mikhail, Fermion number violating effects in low scale leptogenesis, 10.1016/j.physletb.2017.05.068
  109. Caputo A., Hernández P., López-Pavón J., Salvado J., The seesaw portal in testable models of neutrino masses, 10.1007/jhep06(2017)112
  110. Casas J.A., Ibarra A., Oscillating neutrinos and μ→e,γ, 10.1016/s0550-3213(01)00475-8
  111. Gonzalez-Garcia M. C., Maltoni Michele, Schwetz Thomas, Updated fit to three neutrino mixing: status of leptonic CP violation, 10.1007/jhep11(2014)052
  112. M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [ arXiv:1602.04816 ] [ INSPIRE ].
  113. A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile Neutrino Dark Matter, arXiv:1807.07938 [ INSPIRE ].
  114. Drewes Marco, Garbrecht Björn, Combining experimental and cosmological constraints on heavy neutrinos, 10.1016/j.nuclphysb.2017.05.001
  115. Shaposhnikov Mikhail, The νMSM, leptonic asymmetries, and properties of singlet fermions, 10.1088/1126-6708/2008/08/008
  116. Ibarra A., Molinaro E., Petcov S. T., TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν-decay, 10.1007/jhep09(2010)108
  117. Ibarra A., Molinaro E., Petcov S. T., Low energy signatures of the TeV scale seesaw mechanism, 10.1103/physrevd.84.013005
  118. Lopez-Pavon J., Molinaro E., Petcov S. T., Radiative corrections to light neutrino masses in low scale type I seesaw scenarios and neutrinoless double beta decay, 10.1007/jhep11(2015)030
  119. Ruchayskiy Oleg, Ivashko Artem, Experimental bounds on sterile neutrino mixing angles, 10.1007/jhep06(2012)100
  120. Asaka Takehiko, Eijima Shintaro, Ishida Hiroyuki, Mixing of active and sterile neutrinos, 10.1007/jhep04(2011)011
  121. A.D. Sakharov, Violation of CP Invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [ INSPIRE ].
  122. Sigl G., Raffelt G., General kinetic description of relativistic mixed neutrinos, 10.1016/0550-3213(93)90175-o
  123. Buchmüller W., Plümacher M., Spectator processes and baryogenesis, 10.1016/s0370-2693(01)00614-1
  124. Eijima S., Shaposhnikov M., Timiryasov I., Freeze-out of baryon number in low-scale leptogenesis, 10.1088/1475-7516/2017/11/030
  125. Garbrecht Björn, More viable parameter space for leptogenesis, 10.1103/physrevd.90.063522
  126. Besak Denis, Bödeker Dietrich, Thermal production of ultrarelativistic right-handed neutrinos: complete leading-order results, 10.1088/1475-7516/2012/03/029
  127. Garbrecht Björn, Glowna Frank, Schwaller Pedro, Scattering rates for leptogenesis: Damping of lepton flavour coherence and production of singlet neutrinos, 10.1016/j.nuclphysb.2013.08.020
  128. Giudice G.F., Notari A., Raidal M., Riotto A., Strumia A., Towards a complete theory of thermal leptogenesis in the SM and MSSM, 10.1016/j.nuclphysb.2004.02.019
  129. Shuve Brian, Yavin Itay, Baryogenesis through neutrino oscillations: A unified perspective, 10.1103/physrevd.89.075014
  130. Gronau Michael, Leung C. N., Rosner Jonathan L., Extending limits on neutral heavy leptons, 10.1103/physrevd.29.2539
  131. D. Curtin and R. Sundrum, Flashes of Hidden Worlds at Colliders, arXiv:1702.02524 [ INSPIRE ].
  132. D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [Erratum ibid. 1311 (2013) 101] [ arXiv:0705.1729 ] [ INSPIRE ].
  133. H. Abramowicz et al., The International Linear Collider Technical Design Report — Volume 4: Detectors, arXiv:1306.6329 [ INSPIRE ].
  134. Kilian Wolfgang, Ohl Thorsten, Reuter Jürgen, WHIZARD—simulating multi-particle processes at LHC and ILC, 10.1140/epjc/s10052-011-1742-y
  135. M. Moretti, T. Ohl and J. Reuter, O’Mega: An Optimizing matrix element generator, hep-ph/0102195 [ INSPIRE ].
  136. J.S. Marshall and M.A. Thomson, Pandora Particle Flow Algorithm, in Proceedings, International Conference on Calorimetry for the High Energy Frontier (CHEF 2013), Paris France (2013), pg. 305 [ arXiv:1308.4537 ] [ INSPIRE ].
  137. M. Dam, private communication, (2017).
  138. DELPHI collaboration, P. Abreu et al., Searches for heavy neutrinos from Z decays, Phys. Lett. B 274 (1992) 230 [ INSPIRE ].
  139. DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [ INSPIRE ].
  140. Gluza Janusz, Jeliński Tomasz, Heavy neutrinos and thepp→lljjCMS data, 10.1016/j.physletb.2015.06.077
  141. Dev P. S. Bhupal, Mohapatra R. N., Unified Explanation of theeejj, Diboson, and Dijet Resonances at the LHC, 10.1103/physrevlett.115.181803
  142. S. Antusch, E. Cazzato and O. Fischer, Heavy neutrino-antineutrino oscillations at colliders, arXiv:1709.03797 [ INSPIRE ].
  143. Das Arindam, Dev P. S. Bhupal, Mohapatra Rabindra N., Same sign versus opposite sign dileptons as a probe of low scale seesaw mechanisms, 10.1103/physrevd.97.015018
  144. Schwinger Julian, Brownian Motion of a Quantum Oscillator, 10.1063/1.1703727
  145. L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [ INSPIRE ].
  146. Calzetta E., Hu B. L., Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation, 10.1103/physrevd.37.2878
  147. Garbrecht Björn, Herranen Matti, Effective theory of Resonant Leptogenesis in the Closed-Time-Path approach, 10.1016/j.nuclphysb.2012.03.009
  148. Fidler Christian, Herranen Matti, Kainulainen Kimmo, Rahkila Pyry Matti, Flavoured quantum Boltzmann equations from cQPA, 10.1007/jhep02(2012)065
  149. Laine Mikko, Shaposhnikov Mikhail, Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry, 10.1088/1475-7516/2008/06/031
  150. Anisimov Alexey, Besak Denis, Bödeker Dietrich, Thermal production of relativistic Majorana neutrinos: strong enhancement by multiple soft scattering, 10.1088/1475-7516/2011/03/042
  151. Laine M., Thermal right-handed neutrino production rate in the relativistic regime, 10.1007/jhep08(2013)138
  152. I. Ghisoiu and M. Laine, Right-handed neutrino production rate at T > 160 GeV, JCAP 12 (2014) 032 [ arXiv:1411.1765 ] [ INSPIRE ].
  153. Drewes Marco, Kang Jin U, Sterile neutrino Dark Matter production from scalar decay in a thermal bath, 10.1007/jhep05(2016)051
Bibliographic reference Drewes, Marco ; et. al. Probing Leptogenesis at Future Colliders. In: Journal of High Energy Physics, Vol. JHEP09, no., p. 124 (2018)
Permanent URL http://hdl.handle.net/2078.1/214354