User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy

  • Open access
  • PDF
  • 827.75 K
  1. Vecchia P. Di, The Birth of String Theory, Lecture Notes in Physics ISBN:9783540742326 p.59-118, 10.1007/978-3-540-74233-3_4
  2. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [ INSPIRE ].
  3. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [ INSPIRE ].
  4. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [ INSPIRE ].
  5. Brower R.C, DeTar C.E, Weis J.H, Regge theory for multiparticle amplitudes, 10.1016/0370-1573(74)90012-x
  6. P.D.B. Collins, An Introduction to Regge Theory and High-Energy Physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2009).
  7. J.R. Forshaw and D.A. Ross, Quantum chromodynamics and the pomeron, Cambridge Lect. Notes Phys. 9 (1997) 1.
  8. V. Del Duca, An introduction to the perturbative QCD Pomeron and to jet physics at large rapidities, hep-ph/9503226 [ INSPIRE ].
  9. Brink Lars, Schwarz John H., Scherk J., Supersymmetric Yang-Mills theories, 10.1016/0550-3213(77)90328-5
  10. Gliozzi F., Scherk J., Olive D., Supersymmetry, supergravity theories and the dual spinor model, 10.1016/0550-3213(77)90206-1
  11. Hooft G.'t, A planar diagram theory for strong interactions, 10.1016/0550-3213(74)90154-0
  12. Anastasiou C., Dixon L., Bern Z., Kosower D. A., Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory, 10.1103/physrevlett.91.251602
  13. Bern Zvi, Dixon Lance J., Smirnov Vladimir A., Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, 10.1103/physrevd.72.085001
  14. Bartels J., Lipatov L. N., Vera A. Sabio, BFKL Pomeron, Reggeized gluons, and Bern-Dixon-Smirnov amplitudes, 10.1103/physrevd.80.045002
  15. Alday Luis F, Maldacena Juan, Gluon scattering amplitudes at strong coupling, 10.1088/1126-6708/2007/06/064
  16. Drummond J.M., Korchemsky G.P., Sokatchev E., Conformal properties of four-gluon planar amplitudes and Wilson loops, 10.1016/j.nuclphysb.2007.11.041
  17. Brandhuber Andreas, Heslop Paul, Travaglini Gabriele, MHV amplitudes in super-Yang–Mills and Wilson Loops, 10.1016/j.nuclphysb.2007.11.002
  18. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., On planar gluon amplitudes/Wilson loops duality, 10.1016/j.nuclphysb.2007.11.007
  19. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, 10.1016/j.nuclphysb.2009.10.013
  20. Bern Z., Dixon L. J., Kosower D. A., Roiban R., Spradlin M., Vergu C., Volovich A., Two-loop six-gluon maximally helicity violating amplitude in maximally supersymmetric Yang-Mills theory, 10.1103/physrevd.78.045007
  21. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., Hexagon Wilson loop = six-gluon MHV amplitude, 10.1016/j.nuclphysb.2009.02.015
  22. Drummond James M, Henn Johannes, Smirnov Vladimir A, Sokatchev Emery, Magic identities for conformal four-point integrals, 10.1088/1126-6708/2007/01/064
  23. Bern Zvi, Czakon Michael, Dixon Lance J., Kosower David A., Smirnov Vladimir A., Four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, 10.1103/physrevd.75.085010
  24. Bern Z., Carrasco J. J. M., Johansson H., Kosower D. A., Maximally supersymmetric planar Yang-Mills amplitudes at five loops, 10.1103/physrevd.76.125020
  25. Alday Luis F, Maldacena Juan, Comments on gluon scattering amplitudes via AdS/CFT, 10.1088/1126-6708/2007/11/068
  26. Bartels J., Lipatov L. N., Sabio Vera A., N=4 supersymmetric Yang–Mills scattering amplitudes at high energies: the Regge cut contribution, 10.1140/epjc/s10052-009-1218-5
  27. Lipatov L. N., Analytic properties of high-energy production amplitudes in N=4 susy, 10.1007/s11232-012-0018-5
  28. Fadin V.S., Lipatov L.N., BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N=4 SUSY, 10.1016/j.physletb.2011.11.048
  29. L. Lipatov, A. Prygarin and H.J. Schnitzer, The Multi-Regge limit of NMHV Amplitudes in N = 4 SYM Theory, JHEP 01 (2013) 068 [ arXiv:1205.0186 ] [ INSPIRE ].
  30. Dixon Lance J., von Hippel Matt, Bootstrapping an NMHV amplitude through three loops, 10.1007/jhep10(2014)065
  31. Lipatov L. N., Prygarin A., Mandelstam cuts and lightlike Wilson loops inN=4supersymmetry, 10.1103/physrevd.83.045020
  32. Lipatov L. N., Prygarin A., BFKL approach and six-particle maximally helicity violating amplitude inN=4super Yang-Mills theory, 10.1103/physrevd.83.125001
  33. Bartels J., Lipatov L.N., Prygarin A., MHV amplitude for 33 gluon scattering in Regge limit, 10.1016/j.physletb.2011.09.061
  34. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., An analytic result for the two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep03(2010)099
  35. V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 05 (2010) 084 [ arXiv:1003.1702 ] [ INSPIRE ].
  36. Goncharov A. B., Spradlin M., Vergu C., Volovich A., Classical Polylogarithms for Amplitudes and Wilson Loops, 10.1103/physrevlett.105.151605
  37. J. Bartels, J. Kotanski and V. Schomerus, Excited Hexagon Wilson Loops for Strongly Coupled N = 4 SYM, JHEP 01 (2011) 096 [ arXiv:1009.3938 ] [ INSPIRE ].
  38. J. Bartels, J. Kotanski, V. Schomerus and M. Sprenger, The Excited Hexagon Reloaded, arXiv:1311.1512 [ INSPIRE ].
  39. Basso Benjamin, Caron-Huot Simon, Sever Amit, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, 10.1007/jhep01(2015)027
  40. Alday Luis F., Gaiotto Davide, Maldacena Juan, Sever Amit, Vieira Pedro, An operator product expansion for polygonal null Wilson loops, 10.1007/jhep04(2011)088
  41. Gaiotto Davide, Maldacena Juan, Sever Amit, Vieira Pedro, Bootstrapping null polygon Wilson loops, 10.1007/jhep03(2011)092
  42. Gaiotto Davide, Maldacena Juan, Sever Amit, Vieira Pedro, Pulling the straps of polygons, 10.1007/jhep12(2011)011
  43. Sever Amit, Vieira Pedro, Wang Tianheng, OPE for super loops, 10.1007/jhep11(2011)051
  44. Basso Benjamin, Sever Amit, Vieira Pedro, Spacetime and Flux TubeS-Matrices at Finite Coupling forN=4Supersymmetric Yang-Mills Theory, 10.1103/physrevlett.111.091602
  45. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP 01 (2014) 008 [ arXiv:1306.2058 ] [ INSPIRE ].
  46. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [ arXiv:1402.3307 ] [ INSPIRE ].
  47. Basso Benjamin, Sever Amit, Vieira Pedro, Collinear Limit of Scattering Amplitudes at Strong Coupling, 10.1103/physrevlett.113.261604
  48. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix IV. Gluons and Fusion, JHEP 09 (2014) 149 [ arXiv:1407.1736 ] [ INSPIRE ].
  49. Basso Benjamin, Caetano João, Córdova Lucía, Sever Amit, Vieira Pedro, OPE for all helicity amplitudes, 10.1007/jhep08(2015)018
  50. B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all Helicity Amplitudes II. Form Factors and Data Analysis, JHEP 12 (2015) 088 [ arXiv:1508.02987 ] [ INSPIRE ].
  51. Basso Benjamin, Sever Amit, Vieira Pedro, Hexagonal Wilson loops in planar ${ \mathcal N }=4$ SYM theory at finite coupling, 10.1088/1751-8113/49/41/41lt01
  52. J. Bartels, L.N. Lipatov and A. Prygarin, Collinear and Regge behavior of 2 → 4 MHV amplitude in N = 4 super Yang-Mills theory, arXiv:1104.4709 [ INSPIRE ].
  53. Hatsuda Yasuyuki, Wilson loop OPE, analytic continuation and multi-Regge limit, 10.1007/jhep10(2014)038
  54. Drummond J. M., Papathanasiou G., Hexagon OPE resummation and multi-Regge kinematics, 10.1007/jhep02(2016)185
  55. Dixon Lance J., Duhr Claude, Pennington Jeffrey, Single-valued harmonic polylogarithms and the multi-Regge limit, 10.1007/jhep10(2012)074
  56. Pennington Jeffrey, The six-point remainder function to all loop orders in the multi-Regge limit, 10.1007/jhep01(2013)059
  57. Broedel Johannes, Sprenger Martin, Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space, 10.1007/jhep05(2016)055
  58. Dixon Lance J., Drummond James M., Henn Johannes M., Bootstrapping the three-loop hexagon, 10.1007/jhep11(2011)023
  59. Dixon Lance J., Drummond James M., von Hippel Matt, Pennington Jeffrey, Hexagon functions and the three-loop remainder function, 10.1007/jhep12(2013)049
  60. Dixon Lance J., Drummond James M., Duhr Claude, Pennington Jeffrey, The four-loop remainder function and multi-Regge behavior at NNLLA in planar $ \mathcal{N} $ = 4 super-Yang-Mills theory, 10.1007/jhep06(2014)116
  61. Dixon Lance J., von Hippel Matt, McLeod Andrew J., The four-loop six-gluon NMHV ratio function, 10.1007/jhep01(2016)053
  62. Caron-Huot Simon, Dixon Lance J., McLeod Andrew, von Hippel Matt, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, 10.1103/physrevlett.117.241601
  63. Drummond J. M., Papathanasiou G., Spradlin M., A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, 10.1007/jhep03(2015)072
  64. Dixon Lance J., Drummond James, Harrington Thomas, McLeod Andrew J., Papathanasiou Georgios, Spradlin Marcus, Heptagons from the Steinmann cluster bootstrap, 10.1007/jhep02(2017)137
  65. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Scattering Amplitudes and the Positive Grassmannian, Cambridge University Press, Cambridge U.K. (2012).
  66. Golden J. K., Goncharov A. B., Spradlin M., Vergu C., Volovich A., Motivic amplitudes and cluster coordinates, 10.1007/jhep01(2014)091
  67. Caron-Huot Simon, Larsen Kasper J., Uniqueness of two-loop master contours, 10.1007/jhep10(2012)026
  68. Prlina I., Spradlin M., Stankowicz J., Stanojevic S., Boundaries of amplituhedra and NMHV symbol alphabets at two loops, 10.1007/jhep04(2018)049
  69. Del Duca Vittorio, Druc Stefan, Drummond James, Duhr Claude, Dulat Falko, Marzucca Robin, Papathanasiou Georgios, Verbeek Bram, Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, 10.1007/jhep08(2016)152
  70. Bartels J., Kormilitzin A., Lipatov L. N., Prygarin A., BFKL approach and2→5maximally helicity violating amplitude inN=4super-Yang-Mills theory, 10.1103/physrevd.86.065026
  71. Bartels Jochen, Kormilitzin Andrey, Lipatov Lev N., Analytic structure of then=7scattering amplitude inN=4SYM theory in the multi-Regge kinematics: Conformal Regge pole contribution, 10.1103/physrevd.89.065002
  72. Bartels Jochen, Kormilitzin Andrey, Lipatov Lev N., Analytic structure of then=7scattering amplitude inN=4SYM theory in multi-Regge kinematics: Conformal Regge cut contribution, 10.1103/physrevd.91.045005
  73. Caron-Huot Simon, When does the gluon reggeize?, 10.1007/jhep05(2015)093
  74. Bargheer Till, Papathanasiou Georgios, Schomerus Volker, The two-loop symbol of all multi-Regge regions, 10.1007/jhep05(2016)012
  75. Prygarin Alexander, Spradlin Marcus, Vergu Cristian, Volovich Anastasia, All two-loop maximally helicity-violating amplitudes in multi-Regge kinematics from applied symbology, 10.1103/physrevd.85.085019
  76. Bartels J., Schomerus V., Sprenger M., Multi-Regge limit of the n-gluon bubble ansatz, 10.1007/jhep11(2012)145
  77. J. Bartels, V. Schomerus and M. Sprenger, The Bethe roots of Regge cuts in strongly coupled N = 4 $$ \mathcal{N}=4 $$ SYM theory, JHEP 07 (2015) 098 [ arXiv:1411.2594 ] [ INSPIRE ].
  78. V. Del Duca, C. Duhr and E.W.N. Glover, Iterated amplitudes in the high-energy limit, JHEP 12 (2008) 097 [ arXiv:0809.1822 ] [ INSPIRE ].
  79. F.C.S. Brown, Single-valued hyperlogarithms and unipotent differential equations, http://www.ihes.fr/~brown/RHpaper5.pdf .
  80. F.C.S. Brown, Notes on motivic periods, arXiv:1512.06410 .
  81. Freyhult Lisa, Review of AdS/CFT Integrability, Chapter III.4: Twist States and the Cusp Anomalous Dimension, 10.1007/s11005-011-0483-z
  82. B. Basso, On the Regge Limit of Polygonal Wilson Loops, talk at Amplitudes 2016, Stockholm Sweden (2016), http://agenda.albanova.se/contributionDisplay.py?contribId=272&confId=5285 .
  83. Brown Francis C. S., Multiple zeta values and periods of moduli spaces $\overline{\mathfrak{M}}_{0,n}$, 10.24033/asens.2099
  84. Papathanasiou Georgios, Hexagon Wilson loop OPE and harmonic polylogarithms, 10.1007/jhep11(2013)150
  85. L.J. Dixon, J. Drummond, A.J. McLeod, G. Papathanasiou and M. Spradlin, to appear.
  86. Moch Sven, Uwer Peter, Weinzierl Stefan, Nested sums, expansion of transcendental functions, and multiscale multiloop integrals, 10.1063/1.1471366
  87. Bauer Christian, Frink Alexander, Kreckel Richard, Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language, 10.1006/jsco.2001.0494
  88. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [ INSPIRE ].
  89. Weinzierl Stefan, Symbolic expansion of transcendental functions, 10.1016/s0010-4655(02)00261-8
  90. Moch S., Uwer P., -XSummer- Transcendental functions and symbolic summation in Form, 10.1016/j.cpc.2005.12.014
  91. Schnetz Oliver, Graphical functions and single-valued multiple polylogarithms, 10.4310/cntp.2014.v8.n4.a1
  92. Bargheer Till, Systematics of the multi-Regge three-loop symbol, 10.1007/jhep11(2017)077
  93. Lipatov L N, Integrability of scattering amplitudes inN= 4 SUSY, 10.1088/1751-8113/42/30/304020
  94. G. Chachamis and A. Sabio Vera, Open Spin Chains and Complexity in the High Energy Limit, arXiv:1801.04872 [ INSPIRE ].
  95. Chen Kuo-Tsai, Iterated path integrals, 10.1090/s0002-9904-1977-14320-6
  96. C. Bogner and F. Brown, Symbolic integration and multiple polylogarithms, arXiv:1209.6524 [ INSPIRE ].
  97. Duhr Claude, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, 10.1007/jhep08(2012)043
  98. Anastasiou Charalampos, Duhr Claude, Dulat Falko, Mistlberger Bernhard, Soft triple-real radiation for Higgs production at N3LO, 10.1007/jhep07(2013)003
  99. C. Duhr, Mathematical aspects of scattering amplitudes, in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), Boulder U.S.A. (2014), pg. 419 [ arXiv:1411.7538 ] [ INSPIRE ].
Bibliographic reference Marzucca, Robin ; Verbeek, Bram ; Duhr, Claude ; et. al. The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy. In: Journal of High Energy Physics, Vol. 2018, no.116, p. (2018)
Permanent URL http://hdl.handle.net/2078.1/213497