Home»
Mimicking the intramolecular hydrogen bond: synthesis, biological evaluation, and molecular modeling of benzoxazines and quinazolines as potential antimalarial agents.
Accès à distance ? S'identifier sur le proxy UCLouvain
Mimicking the intramolecular hydrogen bond: synthesis, biological evaluation, and molecular modeling of benzoxazines and quinazolines as potential antimalarial agents.
The intramolecular hydrogen bond formed between a protonated amine and a neighboring H-bond acceptor group in the side chain of amodiaquine and isoquine is thought to play an important role in their antimalarial activities. Here we describe isoquine-based compounds in which the intramolecular H-bond is mimicked by a methylene linker. The antimalarial activities of the resulting benzoxazines, their isosteric tetrahydroquinazoline derivatives, and febrifugine-based 1,3-quinazolin-4-ones were examined in vitro (against Plasmodium falciparum ) and in vivo (against Plasmodium berghei ). Compounds 6b,c caused modest inhibition of chloroquine transport via the parasite's "chloroquine resistance transporter" (PfCRT) in a Xenopus laevis oocyte expression system. In silico predictions and experimental evaluation of selected drug-like properties were also performed on compounds 6b,c. Compound 6c emerged from this work as the most promising analogue of the series; it possessed low toxicity and good antimalarial activity when administered orally to P. berghei -infected mice.