Bronchain, Olivier
[UCL]
Dassy, Louis
[ARM Ltd.]
Faust, Sebastian
[TU Darmstadt/Germany]
Standaert, François-Xavier
[UCL]
At CCS2016,Dziembowski et al.proved the security of a generic compilerable to transform any circuit into a Trojan-resilient one base dona(necessary)number of trusted gates. Informally,it exploits techniques from the Multi-Party Computation(MPC) literature in order to exponentially reduce the probability of a successful Trojan attack. As a result,its concrete relevance depends on(i)the possibility to reach good performances with affordable hardware, and (ii) the actual number of trusted gates the solution requires. In this paper, we assess the practicality of the CCS 2016 Trojan resilient compiler based on a blockcipher case study,and optimize its performances in different directions.From the algorithmic viewpoint, we use a recent MPC protocol by Araki et al. (CCS 2016) in order to increase the throughput of our implementations,and we investigate various block ciphers and S-box representations to reduce their communication complexity. From a design viewpoint,we develop an architecture that balances the computation and communication cost of our Trojan-resilient circuits.From an implementation viewpoint,we describe a prototype hardware combining several commercial FPGAs on a dedicated printed circuit board. Thanks to these advances,we exhibit realistic performances for a Trojan-resilient circuit purposed for high-security applications,and confirm that the amount of trusted gates required by the CCS2016 compiler is wel lminimized.


- K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. M. Tehranipoor. 2016. Hardware Trojans: Lessons Learned after One Decade of Research. ACM Trans. Design Autom. Electr. Syst. (2016).
- Y. Wang, P. Chen, J. Hu, and J. Rajendran. 2016. The cat and mouse in split manufacturing. In DAC.
- Waksman Adam, Sethumadhavan Simha, Silencing Hardware Backdoors, 10.1109/sp.2011.27
- Wahby Riad S., Howald Max, Garg Siddharth, Shelat Abhi, Walfish Michael, Verifiable ASICs, 10.1109/sp.2016.51
- Markus Ullrich, Christophe De Canniere, Sebastiaan Indesteege, Özgül Kücc ük, Nicky Mouha, and Bart Preneel. 2011. Finding optimal bitsliced implementations of 4× 4-bit s-boxes. In SKEW 2011 Symmetric Key Encryption Workshop, Copenhagen, Denmark. 16--17.
- M. Tehranipoor and F. Koushanfar. 2010. A Survey of Hardware Trojan Taxonomy and Detection. IEEE Design & Test of Computers (2010).
- S. Skorobogatov and C. Woods. 2012. Breakthrough Silicon Scanning Discovers Backdoor in Military Chip. In CHES.
- Semico Research. [n. d.]. hrefhttps://semico.com/content/semiconductor-ip-market-exceed-8-billion-2020-according-semico-researchhttps://semico.com/. Retrieved on October 15, 2017.
- M. Rivain and E. Prouff. 2010. Provably Secure Higher-Order Masking of AES. In CHES.
- B. Parhami. 2009. Efficient Hamming Weight Comparators for Binary Vectors Based on Accumulative and Up/Down Parallel Counters. IEEE Trans. on Circuits and Systems (2009).
- C. Paar. 2017. Hardware Trojans and Other Threats against Embedded Systems. In AsiaCCS .
- S. Narasimhan, D. Du, R. Subhra Chakraborty, S. Paul, F. G. Wolff, C. A. Papachristou, K. Roy, and S. Bhunia. 2013. Hardware Trojan Detection by Multiple-Parameter Side-Channel Analysis. IEEE Trans. Computers (2013).
- Multi-Gigabit Tranceiver. [n. d.]. https://en.wikipedia.org/wiki/Multi-gigabit_transceiver . Retrieved on October 15, 2017.
- A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. 2011. Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In EUROCRYPT.
- N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. 2005. A Systematic Evaluation of Compact Hardware Implementations for the Rijndael S-Box. In CT-RSA.
- Mavroudis Vasilios, Cerulli Andrea, Svenda Petr, Cvrcek Dan, Klinec Dusan, Danezis George, A Touch of Evil : High-Assurance Cryptographic Hardware from Untrusted Components, 10.1145/3133956.3133961
- H. Kim, S. Hong, and J. Lim. 2011. A Fast and Provably Secure Higher-Order Masking of AES S-Box. In CHES. 95--107.
- A. Journault, F.-X. Standaert, and Kerem Varici. 2017. Improving the security and efficiency of block ciphers based on LS-designs. Des. Codes Cryptography (2017).
- Y. Jin and Y. Makris. 2010. Hardware Trojans in Wireless Cryptographic ICs. IEEE Design & Test of Computers (2010).
- F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara. 2013. Securing Computer Hardware Using 3D Integrated Circuit (IC) Technology and Split Manufacturing for Obfuscation. In USENIX Security Symposium.
- IEEE International Symposium on Hardware Oriented Security And Trust. [n. d.]. http://www.hostsymposium.org/. Retrieved on October 15, 2017.
- S. Hoory, A. Magen, and T. Pitassi. 2006. Monotone Circuits for the Majority Function. In APPROX-RANDOM.
- C. Hocquet, D. Kamel, F. Regazzoni, J.-D. Legat, D. Flandre, D. Bol, and F-X. Standaert. 2011. Harvesting the potential of nano-CMOS for lightweight cryptography: an ultra-low-voltage 65 nm AES coprocessor for passive RFID tags. J. Cryptographic Engineering (2011).
- V. Grosso, F.-X. Standaert, and S. Faust. 2015. Masking vs. Multiparty Computation: How Large is the Gap for AES? IACR Cryptology ePrint Archive (2015).
- S. Ghandali, G. T. Becker, D. Holcomb, and C. Paar. 2016. A Design Methodology for Stealthy Parametric Trojans and Its Application to Bug Attacks. In CHES.
- M. Feldhofer. [n. d.]. AES implementation on a grain of sand. ([n. d.]), 13--20(7).
- Dziembowski Stefan, Faust Sebastian, Standaert François-Xavier, Private Circuits III : Hardware Trojan-Resilience via Testing Amplification, 10.1145/2976749.2978419
- J. Daemen and V. Rijmen. 2002. The Design of Rijndael: AES - The Advanced Encryption Standard.
- S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan. 2014. Hardware Trojan Attacks: Threat Analysis and Countermeasures. Proc. IEEE (2014).
- G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson. 2014. Stealthy dopant-level hardware Trojans: extended version. J. Cryptographic Engineering (2014).
- C. Bayer and J.-P. Seifert. 2013. Trojan-resilient circuits. In PROOFS.
- G. Ateniese, A. Kiayias, B. Magri, Y. Tselekounis, and D. Venturi. 2016. Secure Outsourcing of Circuit Manufacturing. IACR Cryptology ePrint Archive (2016).
- Araki Toshinori, Furukawa Jun, Lindell Yehuda, Nof Ariel, Ohara Kazuma, High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority, 10.1145/2976749.2978331
- Agrawal Dakshi, Baktir Selcuk, Karakoyunlu Deniz, Rohatgi Pankaj, Sunar Berk, Trojan Detection using IC Fingerprinting, 10.1109/sp.2007.36
- S. O. Adee. 2008. The Hunt For The Kill Switch. IEEE Spectrum (2008).
- J. Aarestad, D. Acharyya, R. M. Rad, and J. Plusquellic. 2010. Detecting Trojans Through Leakage Current Analysis Using Multiple Supply Pad I(_mboxDDQ)s. IEEE Trans. Information Forensics and Security (2010).
Bibliographic reference |
Bronchain, Olivier ; Dassy, Louis ; Faust, Sebastian ; Standaert, François-Xavier. Implementing Trojan-Resilient Hardware from(Mostly) Untrusted Components Designed by Colluding Manufacturers.2018 Workshop on Attacks and Solutions in Hardware Security (ASHES@CCS 2018) (Toronto (Canada), 19/10/2018). In: Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security (ASHES@CCS 2018), Chip-Hong Chip, Ulrich Rührmair, Daniel Holcomb, Jorge Guajardo2018, p.1-10 |
Permanent URL |
http://hdl.handle.net/2078.1/210728 |