User menu

Groups of automorphisms and almost automorphisms of trees: subgroups and dynamics

  1. Abért Miklós, Glasner Yair, Virág Bálint, Kesten’s theorem for invariant random subgroups, 10.1215/00127094-2410064
  2. Arzhantseva G., Minasyan A., Relatively hyperbolic groups are C-simple, 10.1016/j.jfa.2006.06.003
  3. Bader Uri, Caprace Pierre-Emmanuel, Gelander Tsachik, Mozes Shahar, Simple groups without lattices, 10.1112/blms/bdr061
  4. Banks Christopher, Elder Murray, Willis George A., Simple groups of automorphisms of trees determined by their actions on finite subtrees, 10.1515/jgth-2014-0041
  5. Bekka M., Cowling M., Harpe P., Some groups whose reduced C*-algebra is simple, 10.1007/bf02698898
  6. Bridson Martin R., de la Harpe Pierre, Mapping class groups and outer automorphism groups of free groups are C∗-simple, 10.1016/s0022-1236(03)00216-7
  7. Breuillard, E., Kalantar, M., Kennedy, M., Ozawa, N.: C ∗-simplicity and the unique trace property for discrete groups (2014). Preprint. arXiv:1410.2518
  8. Burger Marc, Mozes Shahar, Groups acting on trees: From local to global structure, 10.1007/bf02698915
  9. Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson’s groups. Enseign. Math. (2) 42(3-4), 215–256 (1996)
  10. Caprace, P.-E.: Automorphism groups of right-angled buildings: simplicity and local splittings (2012). Preprint. arXiv:1210.7549
  11. Caprace* Pierre-Emmanuel, De Medts Tom, Simple locally compact groups acting on trees and their germs of automorphisms, 10.1007/s00031-011-9131-z
  12. CAPRACE PIERRE-EMMANUEL, MONOD NICOLAS, Decomposing locally compact groups into simple pieces, 10.1017/s0305004110000368
  13. Caprace, P.-E., Reid, C., Willis, G.: Locally normal subgroups of totally disconnected groups. Part I: general theory (2013). arXiv:1304.5144v1
  14. Caprace, P.-E., Reid, C., Willis, G.: Locally normal subgroups of totally disconnected groups. Part II: compactly generated simple groups (2014). arXiv:1401.3142v1
  15. Dahmani, F., Guirardel, V., Osin, D.: Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces (2011). Preprint. arXiv:1111.7048
  16. de la Harpe, P.: Groupes hyperboliques, algebres d’opérateurs et un théoreme de jolissaint. CR Acad. Sci. Paris Sér. I Math. 307(14), 771–774 (1988)
  17. de la Harpe Pierre, On simplicity of reduced C*-algebras of groups : PIERRE DE LA HARPE, 10.1112/blms/bdl014
  18. Glasner Eli, Weiss Benjamin, Uniformly recurrent subgroups, 10.1090/conm/631/12596
  19. Haagerup, U., Olesen, K.K.: The thompson groups t and v are not inner-amenable (2014). Preprint
  20. Haglund, F., Paulin, F.: Simplicité de groupes d’automorphismes d’espaces a courbure négative. Geometry and Topology Monographs, vol. 1. International Press, Vienna (1998)
  21. Kalantar, M., Kennedy, M.: Boundaries of reduced C ∗-algebras of discrete groups. J. Reine Angew. Math. 727, 247–267 (2017)
  22. Kapoudjian Christophe, Simplicity of Neretin's group of spheromorphisms, 10.5802/aif.1715
  23. Kennedy, M.: Characterizations of C ∗-simplicity (2015). arXiv:1509.01870v3
  24. Lazarovich, N.: On regular cat (0) cube complexes (2014). Preprint. arXiv:1411.0178
  25. Le Boudec Adrien, Compact presentability of tree almost automorphism groups, 10.5802/aif.3084
  26. Le Boudec Adrien, Groups acting on trees with almost prescribed local action, 10.4171/cmh/385
  27. Le Boudec, A., Matte Bon, N.: Subgroup dynamics and C ∗-simplicity of groups of homeomorphisms (2016). arXiv:1605.01651
  28. Le Boudec, A., Wesolek, P.: Commensurated subgroups in tree almost automorphism groups (2016). arXiv preprint arXiv:1604.04162
  29. Lodha Yash, Moore Justin Tatch, A nonamenable finitely presented group of piecewise projective homeomorphisms, 10.4171/ggd/347
  30. Monod N., Groups of piecewise projective homeomorphisms, 10.1073/pnas.1218426110
  31. Möller Rögnvaldur G., Vonk Jan, Normal subgroups of groups acting on trees and automorphism groups of graphs, 10.1515/jgt-2012-0029
  32. Neretin, Yu.A.: Combinatorial analogues of the group of diffeomorphisms of the circle. Izv. Ross. Akad. Nauk Ser. Mat. 56(5), 1072–1085 (1992)
  33. Neumann B. H., Groups Covered By Permutable Subsets, 10.1112/jlms/s1-29.2.236
  34. Olshanskii, A., Osin, D.: C ∗-simple groups without free subgroups (2014). arXiv:1401.7300v3
  35. Paschke William, Salinas Norberto, C∗-algebras associated with free products of groups, 10.2140/pjm.1979.82.211
  36. Pays, I., Valette, A.: Sous-groupes libres dans les groupes d’automorphismes d’arbres. Enseign. Math., Rev. Int., IIe Sér. 151–174 (1991)
  37. Powers Robert T., Simplicity of the $C\sp{\ast} $ -algebra associated with the free group on two generators, 10.1215/s0012-7094-75-04213-1
  38. Poznansky, T.: Characterization of linear groups whose reduced C ∗-algebras are simple (2008). Preprint. arXiv:0812.2486
  39. Sauer, R., Thumann, W.: Topological models of finite type for tree almost-automorphism groups (2015). Preprint. arXiv:1510.05554
  40. Serre Jean-Pierre, Trees, ISBN:9783642618581, 10.1007/978-3-642-61856-7
  41. Shalom Yehuda, Willis George A., Commensurated Subgroups of Arithmetic Groups, Totally Disconnected Groups and Adelic Rigidity, 10.1007/s00039-013-0236-5
  42. Sidki Said, Wilson J. S., Free subgroups of branch groups, 10.1007/s00013-003-0812-2
  43. Swiatoslaw, G., Gismatullin, J., with an appendix by N. Lazarovich, Uniform symplicity of groups with proximal action (2016). Preprint. arXiv:1602.08740
  44. Tits Jacques, Sur le groupe des automorphismes d’un arbre, Essays on Topology and Related Topics (1970) ISBN:9783642491993 p.188-211, 10.1007/978-3-642-49197-9_18
Bibliographic reference Le Boudec, Adrien. Groups of automorphisms and almost automorphisms of trees: subgroups and dynamics. In: 2016 MATRIX Annals, Vol. np, no.np, p. 501-523 (2018)
Permanent URL http://hdl.handle.net/2078.1/207700