User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Attention bias modification in remitted depression is associated with increased interest and leads to reduced adverse impact of anxiety symptoms and negative cognition.

  • Open access
  • PDF
  • 291.29 K
  1. Arditte Kimberly A., Joormann Jutta, Rumination Moderates the Effects of Cognitive Bias Modification of Attention, 10.1007/s10608-013-9581-9
  2. Barrat A., Barthelemy M., Pastor-Satorras R., Vespignani A., The architecture of complex weighted networks, 10.1073/pnas.0400087101
  3. Basanovic Julian, Notebaert Lies, Grafton Ben, Hirsch Colette R., Clarke Patrick J.F., Attentional control predicts change in bias in response to attentional bias modification, 10.1016/j.brat.2017.09.002
  4. Beard C., Millner A. J., Forgeard M. J. C., Fried E. I., Hsu K. J., Treadway M. T., Leonard C. V., Kertz S. J., Björgvinsson T., Network analysis of depression and anxiety symptom relationships in a psychiatric sample, 10.1017/s0033291716002300
  5. Beck Aaron T., Bredemeier Keith, A Unified Model of Depression : Integrating Clinical, Cognitive, Biological, and Evolutionary Perspectives, 10.1177/2167702616628523
  6. Beck A. T., Beck Depres-sion Inventory–II (1996)
  7. Beevers Christopher G., Clasen Peter C., Enock Philip M., Schnyer David M., Attention bias modification for major depressive disorder: Effects on attention bias, resting state connectivity, and symptom change., 10.1037/abn0000049
  8. Bernstein Emily E., Heeren Alexandre, McNally Richard J., Unpacking Rumination and Executive Control: A Network Perspective, 10.1177/2167702617702717
  9. Borgatti Stephen P., Centrality and network flow, 10.1016/j.socnet.2004.11.008
  10. Borsboom Denny, A network theory of mental disorders, 10.1002/wps.20375
  11. Borsboom Denny, Cramer Angélique O.J., Network Analysis: An Integrative Approach to the Structure of Psychopathology, 10.1146/annurev-clinpsy-050212-185608
  12. Boschloo Lynn, van Borkulo Claudia D., Borsboom Denny, Schoevers Robert A., A Prospective Study on How Symptoms in a Network Predict the Onset of Depression, 10.1159/000442001
  13. Bringmann L. F., Lemmens L. H. J. M., Huibers M. J. H., Borsboom D., Tuerlinckx F., Revealing the dynamic network structure of the Beck Depression Inventory-II, 10.1017/s0033291714001809
  14. Browning Michael, Holmes Emily A., Charles Matthew, Cowen Philip J., Harmer Catherine J., Using Attentional Bias Modification as a Cognitive Vaccine Against Depression, 10.1016/j.biopsych.2012.04.014
  15. Costenbader Elizabeth, Valente Thomas W, The stability of centrality measures when networks are sampled, 10.1016/s0378-8733(03)00012-1
  16. Cramer Angélique O. J., van Borkulo Claudia D., Giltay Erik J., van der Maas Han L. J., Kendler Kenneth S., Scheffer Marten, Borsboom Denny, Major Depression as a Complex Dynamic System, 10.1371/journal.pone.0167490
  17. Cristea Ioana A., Kok Robin N., Cuijpers Pim, Efficacy of cognitive bias modification interventions in anxiety and depression: Meta-analysis, 10.1192/bjp.bp.114.146761
  18. Cristea Ioana A., Kok Robin N., Cuijpers Pim, Invited commentary on … Confusing procedures with process in cognitive bias modification research, 10.1192/bjp.bp.117.200972
  19. Cuijpers Pim, Schoevers Robert A., Increased mortality in depressive disorders: A review, 10.1007/s11920-004-0007-y
  20. De Raedt Rudi, Koster Ernst H. W., Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and a new conceptual framework, 10.3758/cabn.10.1.50
  21. Prevalence, Severity, and Unmet Need for Treatment of Mental Disorders in the World Health Organization World Mental Health Surveys, 10.1001/jama.291.21.2581
  22. Disner Seth G., Beevers Christopher G., Haigh Emily A. P., Beck Aaron T., Neural mechanisms of the cognitive model of depression, 10.1038/nrn3027
  23. Epskamp Sacha, Borsboom Denny, Fried Eiko I., Estimating psychological networks and their accuracy: A tutorial paper, 10.3758/s13428-017-0862-1
  24. Epskamp Sacha, Cramer Angélique O. J., Waldorp Lourens J., Schmittmann Verena D., Borsboom Denny, qgraph: Network Visualizations of Relationships in Psychometric Data, 10.18637/jss.v048.i04
  25. Epskamp Sacha, Fried Eiko I., A tutorial on regularized partial correlation networks., 10.1037/met0000167
  26. Fisher Aaron J., Reeves Jonathan W., Lawyer Glenn, Medaglia John D., Rubel Julian A., Exploring the idiographic dynamics of mood and anxiety via network analysis., 10.1037/abn0000311
  27. Fox Elaine, The role of visual processes in modulating social interactions, 10.1080/13506280444000067
  28. Fried Eiko I., Epskamp Sacha, Nesse Randolph M., Tuerlinckx Francis, Borsboom Denny, What are 'good' depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis, 10.1016/j.jad.2015.09.005
  29. Fried Eiko I, Nesse Randolph M, Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential, 10.1186/s12916-015-0325-4
  30. Fried E. I., Nesse R. M., Zivin K., Guille C., Sen S., Depression is more than the sum score of its parts: individual DSM symptoms have different risk factors, 10.1017/s0033291713002900
  31. Fried Eiko I., van Borkulo Claudia D., Cramer Angélique O. J., Boschloo Lynn, Schoevers Robert A., Borsboom Denny, Mental disorders as networks of problems: a review of recent insights, 10.1007/s00127-016-1319-z
  32. Friedman J., Hastie T., Tibshirani R., Sparse inverse covariance estimation with the graphical lasso, 10.1093/biostatistics/kxm045
  33. Fruchterman Thomas M. J., Reingold Edward M., Graph drawing by force-directed placement, 10.1002/spe.4380211102
  34. Gollwitzer Mario, Christ Oliver, Lemmer Gunnar, Individual differences make a difference: On the use and the psychometric properties of difference scores in social psychology : Reliability of difference scores, 10.1002/ejsp.2042
  35. Gotlib Ian H., Joormann Jutta, Cognition and Depression: Current Status and Future Directions, 10.1146/annurev.clinpsy.121208.131305
  36. Gotlib Ian H., Krasnoperova Elena, Yue Dana Neubauer, Joormann Jutta, Attentional Biases for Negative Interpersonal Stimuli in Clinical Depression., 10.1037/0021-843x.113.1.121
  37. Grafton Ben, MacLeod Colin, Rudaizky Daniel, Holmes Emily A., Salemink Elske, Fox Elaine, Notebaert Lies, Confusing procedures with process when appraising the impact of cognitive bias modification on emotional vulnerability, 10.1192/bjp.bp.115.176123
  38. Hakamata Yuko, Lissek Shmuel, Bar-Haim Yair, Britton Jennifer C., Fox Nathan A., Leibenluft Ellen, Ernst Monique, Pine Daniel S., Attention Bias Modification Treatment: A Meta-Analysis Toward the Establishment of Novel Treatment for Anxiety, 10.1016/j.biopsych.2010.07.021
  39. Hamilton M., A RATING SCALE FOR DEPRESSION, 10.1136/jnnp.23.1.56
  40. Harmer Catherine J, Duman Ronald S, Cowen Philip J, How do antidepressants work? New perspectives for refining future treatment approaches, 10.1016/s2215-0366(17)30015-9
  41. Heeren Alexandre, McNally Richard J., Social Anxiety Disorder as a Densely Interconnected Network of Fear and Avoidance for Social Situations, 10.1007/s10608-017-9876-3
  42. Hofmann Stefan G., Curtiss Joshua, A complex network approach to clinical science, 10.1111/eci.12986
  43. Hofmann Stefan G., Curtiss Joshua, McNally Richard J., A Complex Network Perspective on Clinical Science, 10.1177/1745691616639283
  44. Jones Payton J., Heeren Alexandre, McNally Richard J., Commentary: A network theory of mental disorders, 10.3389/fpsyg.2017.01305
  45. Joormann Jutta, Gotlib Ian H., Selective attention to emotional faces following recovery from depression., 10.1037/0021-843x.116.1.80
  46. Joormann Jutta, Talbot Lisa, Gotlib Ian H., Biased processing of emotional information in girls at risk for depression., 10.1037/0021-843x.116.1.135
  47. Koster Ernst H.W., Bernstein Amit, Introduction to the special issue on Cognitive bias modification: Taking a step back to move forward?, 10.1016/j.jbtep.2015.05.006
  48. Kujawa Autumn J., Torpey Dana, Kim Jiyon, Hajcak Greg, Rose Suzanne, Gotlib Ian H., Klein Daniel N., Attentional Biases for Emotional Faces in Young Children of Mothers with Chronic or Recurrent Depression, 10.1007/s10802-010-9438-6
  49. Mathews Andrew, MacLeod Colin, Cognitive Vulnerability to Emotional Disorders, 10.1146/annurev.clinpsy.1.102803.143916
  50. Maurage Pierre, Heeren Alexandre, Pesenti Mauro, Does Chocolate Consumption Really Boost Nobel Award Chances? The Peril of Over-Interpreting Correlations in Health Studies, 10.3945/jn.113.174813
  51. McNally Richard J., Can network analysis transform psychopathology?, 10.1016/j.brat.2016.06.006
  52. McNally Richard J., Attentional bias for threat: Crisis or opportunity?, 10.1016/j.cpr.2018.05.005
  53. Mogg Karin, Waters Allison M., Bradley Brendan P., Attention Bias Modification (ABM): Review of Effects of Multisession ABM Training on Anxiety and Threat-Related Attention in High-Anxious Individuals, 10.1177/2167702617696359
  54. Mogoaşe Cristina, David Daniel, Koster Ernst H. W., Clinical Efficacy of Attentional Bias Modification Procedures: An Updated Meta-Analysis : Clinical Efficacy of Attention Retraining, 10.1002/jclp.22081
  55. Nolen-Hoeksema Susan, Wisco Blair E., Lyubomirsky Sonja, Rethinking Rumination, 10.1111/j.1745-6924.2008.00088.x
  56. Opsahl Tore, Agneessens Filip, Skvoretz John, Node centrality in weighted networks: Generalizing degree and shortest paths, 10.1016/j.socnet.2010.03.006
  57. Paykel E. S., Dialogues in Clinical Neuroscience, 10, 431 (2008)
  58. Pe Madeline Lee, Kircanski Katharina, Thompson Renee J., Bringmann Laura F., Tuerlinckx Francis, Mestdagh Merijn, Mata Jutta, Jaeggi Susanne M., Buschkuehl Martin, Jonides John, Kuppens Peter, Gotlib Ian H., Emotion-Network Density in Major Depressive Disorder, 10.1177/2167702614540645
  59. Peckham Andrew D., McHugh R. Kathryn, Otto Michael W., A meta-analysis of the magnitude of biased attention in depression, 10.1002/da.20755
  60. Price Rebecca B., Kuckertz Jennie M., Siegle Greg J., Ladouceur Cecile D., Silk Jennifer S., Ryan Neal D., Dahl Ronald E., Amir Nader, Empirical recommendations for improving the stability of the dot-probe task in clinical research., 10.1037/pas0000036
  61. Sanchez-Lopez Alvaro, Vanderhasselt Marie-Anne, Allaert Jens, Baeken Chris, De Raedt Rudi, Neurocognitive mechanisms behind emotional attention: Inverse effects of anodal tDCS over the left and right DLPFC on gaze disengagement from emotional faces, 10.3758/s13415-018-0582-8
  62. Schweren Lizanne, van Borkulo Claudia D., Fried Eiko, Goodyer Ian M., Assessment of Symptom Network Density as a Prognostic Marker of Treatment Response in Adolescent Depression, 10.1001/jamapsychiatry.2017.3561
  63. Sheehan D. V., Journal of Clinical Psychiatry, 59, 22 (1998)
  64. Shiroma Paulo R., Thuras Paul, Johns Brian, Lim Kelvin O., Emotion recognition processing as early predictor of response to 8-week citalopram treatment in late-life depression : Emotion recognition in late-life depression, 10.1002/gps.4104
  65. Southworth Felicity, Grafton Ben, MacLeod Colin, Watkins Ed, Heightened ruminative disposition is associated with impaired attentional disengagement from negative relative to positive information: support for the “impaired disengagement” hypothesis, 10.1080/02699931.2015.1124843
  66. Teasdale John D., Cognitive Vulnerability to Persistent Depression, 10.1080/02699938808410927
  67. Treynor Wendy, 10.1023/a:1023910315561
  68. Valente Thomas W., Network Interventions, 10.1126/science.1217330
  69. van Borkulo Claudia, Boschloo Lynn, Borsboom Denny, Penninx Brenda W. J. H., Waldorp Lourens J., Schoevers Robert A., Association of Symptom Network Structure With the Course of Depression, 10.1001/jamapsychiatry.2015.2079
  70. Wells Tony T., Beevers Christopher G., Biased attention and dysphoria: Manipulating selective attention reduces subsequent depressive symptoms, 10.1080/02699930802652388
  71. Wichers M., The dynamic nature of depression: a new micro-level perspective of mental disorder that meets current challenges, 10.1017/s0033291713001979
  72. Wichers Marieke, Groot Peter C., , Critical Slowing Down as a Personalized Early Warning Signal for Depression, 10.1159/000441458
  73. Wild Beate, Eichler Michael, Friederich Hans-Christoph, Hartmann Mechthild, Zipfel Stephan, Herzog Wolfgang, A graphical vector autoregressive modelling approach to the analysis of electronic diary data, 10.1186/1471-2288-10-28
  74. Yang Yingkai, Cao Songfeng, Shields Grant S., Teng Zhaojun, Liu Yanling, The relationships between rumination and core executive functions: A meta-analysis : Yang et al., 10.1002/da.22539
  75. Yang Wenhui, Ding Zhirui, Dai Ting, Peng Fang, Zhang John X., Attention Bias Modification training in individuals with depressive symptoms: A randomized controlled trial, 10.1016/j.jbtep.2014.08.005
  76. Zvielli Ariel, Bernstein Amit, Koster Ernst H. W., Temporal Dynamics of Attentional Bias, 10.1177/2167702614551572
Bibliographic reference Kraft, Brage ; Jonassen, Rune ; Heeren, Alexandre ; Harmer, Catherine ; Stiles, Tore ; et. al. Attention bias modification in remitted depression is associated with increased interest and leads to reduced adverse impact of anxiety symptoms and negative cognition.. In: Clinical Psychological Science, Vol. 7, no. 3, p. 530-544 (2019)
Permanent URL http://hdl.handle.net/2078.1/203928