Léger, Jean
[UCL]
Brion, Eliott
[UCL]
Javaid, Umair
[UCL]
Lee, John Aldo
[UCL]
De Vleeschouwer, Christophe
[UCL]
Macq, Benoît
[UCL]
Although deep convolutional neural networks (CNNs) have outperformed state-of-the-art in many medical image segmentation tasks, deep network architectures generally fail in exploiting common sense prior to drive the segmentation. In particular, the availability of a segmented (source) image observed in a CT slice that is adjacent to the slice to be segmented (or target image) has not been considered to improve the deep models segmentation accuracy. In this paper, we investigate a CNN architecture that maps a joint input, composed of the target image and the source segmentation, to a target segmentation. We observe that our solution succeeds in taking advantage of the source segmentation when it is sufficiently close to the target segmentation, without being penalized when the source is far from the target.


- Mazurowski, M.A., Buda, M., Saha, A., Bashir, M.R.: Deep learning in radiology: an overview of the concepts and a survey of the state of the art. arXiv preprint
arXiv:1802.08717
(2018)
- Sharp Gregory, Fritscher Karl D., Pekar Vladimir, Peroni Marta, Shusharina Nadya, Veeraraghavan Harini, Yang Jinzhong, Vision 20/20: Perspectives on automated image segmentation for radiotherapy : Perspectives on automated image segmentation for radiotherapy, 10.1118/1.4871620
- Cha Kenny H., Hadjiiski Lubomir, Chan Heang-Ping, Weizer Alon Z., Alva Ajjai, Cohan Richard H., Caoili Elaine M., Paramagul Chintana, Samala Ravi K., Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning, 10.1038/s41598-017-09315-w
- Iglesias Juan Eugenio, Sabuncu Mert R., Multi-atlas segmentation of biomedical images: A survey, 10.1016/j.media.2015.06.012
- Cremers Daniel, Rousson Mikael, Deriche Rachid, A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape, 10.1007/s11263-006-8711-1
- Heimann Tobias, Meinzer Hans-Peter, Statistical shape models for 3D medical image segmentation: A review, 10.1016/j.media.2009.05.004
- Polan Daniel F, Brady Samuel L, Kaufman Robert A, Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study, 10.1088/0031-9155/61/17/6553
- Luo, S., Hu, Q., He, X., Li, J., Jin, J.S., Park, M.: Automatic liver parenchyma segmentation from abdominal CT images using support vector machines. In: ICME International Conference on Complex Medical Engineering, CME 2009, pp. 1–5. IEEE (2009)
- Hu, Y.C.J., Grossberg, M.D., Mageras, G.S.: Semi-automatic medical image segmentation with adaptive local statistics in conditional random fields framework. In: 30th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, EMBS 2008, pp. 3099–3102. IEEE (2008)
- Tong Tong, Wolz Robin, Wang Zehan, Gao Qinquan, Misawa Kazunari, Fujiwara Michitaka, Mori Kensaku, Hajnal Joseph V., Rueckert Daniel, Discriminative dictionary learning for abdominal multi-organ segmentation, 10.1016/j.media.2015.04.015
- Gao Yaozong, Shao Yeqin, Lian Jun, Wang Andrew Z., Chen Ronald C., Shen Dinggang, Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests, 10.1109/tmi.2016.2519264
- Oda Masahiro, Shimizu Natsuki, Karasawa Ken’ichi, Nimura Yukitaka, Kitasaka Takayuki, Misawa Kazunari, Fujiwara Michitaka, Rueckert Daniel, Mori Kensaku, Regression Forest-Based Atlas Localization and Direction Specific Atlas Generation for Pancreas Segmentation, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 (2016) ISBN:9783319467221 p.556-563, 10.1007/978-3-319-46723-8_64
- Litjens Geert, Kooi Thijs, Bejnordi Babak Ehteshami, Setio Arnaud Arindra Adiyoso, Ciompi Francesco, Ghafoorian Mohsen, van der Laak Jeroen A.W.M., van Ginneken Bram, Sánchez Clara I., A survey on deep learning in medical image analysis, 10.1016/j.media.2017.07.005
- Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
- Ronneberger Olaf, Fischer Philipp, Brox Thomas, U-Net: Convolutional Networks for Biomedical Image Segmentation, Lecture Notes in Computer Science (2015) ISBN:9783319245737 p.234-241, 10.1007/978-3-319-24574-4_28
- Çiçek Özgün, Abdulkadir Ahmed, Lienkamp Soeren S., Brox Thomas, Ronneberger Olaf, 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 (2016) ISBN:9783319467221 p.424-432, 10.1007/978-3-319-46723-8_49
- Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
- Ibragimov Bulat, Xing Lei, Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks, 10.1002/mp.12045
- Kazemifar, S., et al.: Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning. arXiv preprint
arXiv:1802.09587
(2018)
- Roth, H.R., et al.: Hierarchical 3D fully convolutional networks for multi-organ segmentation. arXiv preprint
arXiv:1704.06382
(2017)
- Larsson Måns, Zhang Yuhang, Kahl Fredrik, Robust Abdominal Organ Segmentation Using Regional Convolutional Neural Networks, Image Analysis (2017) ISBN:9783319591285 p.41-52, 10.1007/978-3-319-59129-2_4
- Milletari Fausto, Rothberg Alex, Jia Jimmy, Sofka Michal, Integrating Statistical Prior Knowledge into Convolutional Neural Networks, Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 (2017) ISBN:9783319661810 p.161-168, 10.1007/978-3-319-66182-7_19
- Trullo R., Petitjean C., Ruan S., Dubray B., Nie D., Shen D., Segmentation of Organs at Risk in thoracic CT images using a SharpMask architecture and Conditional Random Fields, 10.1109/isbi.2017.7950685
- Klein, S., Staring, M.: Elastix, the manual (2018).
http://elastix.isi.uu.nl/download/elastix-4.9.0-manual.pdf
Bibliographic reference |
Léger, Jean ; Brion, Eliott ; Javaid, Umair ; Lee, John Aldo ; De Vleeschouwer, Christophe ; et. al. Contour Propagation in CT Scans with Convolutional Neural Networks.Advanced Concepts for Intelligent Vision Systems (France, du 24/09/2018 au 27/09/2018). In: Proceedings of ACIVS, in Lecture Notes in Computer Science book series., 2018 |
Permanent URL |
http://hdl.handle.net/2078.1/203221 |