User menu

Accès à distance en utilisant le proxy de l'UCL :

https://proxy.bib.ucl.ac.be/proxy-dial

Contour Propagation in CT Scans with Convolutional Neural Networks

  • Open access
  • PDF
  • 752.97 K
  1. Mazurowski, M.A., Buda, M., Saha, A., Bashir, M.R.: Deep learning in radiology: an overview of the concepts and a survey of the state of the art. arXiv preprint arXiv:1802.08717 (2018)
  2. Sharp Gregory, Fritscher Karl D., Pekar Vladimir, Peroni Marta, Shusharina Nadya, Veeraraghavan Harini, Yang Jinzhong, Vision 20/20: Perspectives on automated image segmentation for radiotherapy : Perspectives on automated image segmentation for radiotherapy, 10.1118/1.4871620
  3. Cha Kenny H., Hadjiiski Lubomir, Chan Heang-Ping, Weizer Alon Z., Alva Ajjai, Cohan Richard H., Caoili Elaine M., Paramagul Chintana, Samala Ravi K., Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning, 10.1038/s41598-017-09315-w
  4. Iglesias Juan Eugenio, Sabuncu Mert R., Multi-atlas segmentation of biomedical images: A survey, 10.1016/j.media.2015.06.012
  5. Cremers Daniel, Rousson Mikael, Deriche Rachid, A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape, 10.1007/s11263-006-8711-1
  6. Heimann Tobias, Meinzer Hans-Peter, Statistical shape models for 3D medical image segmentation: A review, 10.1016/j.media.2009.05.004
  7. Polan Daniel F, Brady Samuel L, Kaufman Robert A, Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study, 10.1088/0031-9155/61/17/6553
  8. Luo, S., Hu, Q., He, X., Li, J., Jin, J.S., Park, M.: Automatic liver parenchyma segmentation from abdominal CT images using support vector machines. In: ICME International Conference on Complex Medical Engineering, CME 2009, pp. 1–5. IEEE (2009)
  9. Hu, Y.C.J., Grossberg, M.D., Mageras, G.S.: Semi-automatic medical image segmentation with adaptive local statistics in conditional random fields framework. In: 30th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, EMBS 2008, pp. 3099–3102. IEEE (2008)
  10. Tong Tong, Wolz Robin, Wang Zehan, Gao Qinquan, Misawa Kazunari, Fujiwara Michitaka, Mori Kensaku, Hajnal Joseph V., Rueckert Daniel, Discriminative dictionary learning for abdominal multi-organ segmentation, 10.1016/j.media.2015.04.015
  11. Gao Yaozong, Shao Yeqin, Lian Jun, Wang Andrew Z., Chen Ronald C., Shen Dinggang, Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests, 10.1109/tmi.2016.2519264
  12. Oda Masahiro, Shimizu Natsuki, Karasawa Ken’ichi, Nimura Yukitaka, Kitasaka Takayuki, Misawa Kazunari, Fujiwara Michitaka, Rueckert Daniel, Mori Kensaku, Regression Forest-Based Atlas Localization and Direction Specific Atlas Generation for Pancreas Segmentation, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 (2016) ISBN:9783319467221 p.556-563, 10.1007/978-3-319-46723-8_64
  13. Litjens Geert, Kooi Thijs, Bejnordi Babak Ehteshami, Setio Arnaud Arindra Adiyoso, Ciompi Francesco, Ghafoorian Mohsen, van der Laak Jeroen A.W.M., van Ginneken Bram, Sánchez Clara I., A survey on deep learning in medical image analysis, 10.1016/j.media.2017.07.005
  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
  15. Ronneberger Olaf, Fischer Philipp, Brox Thomas, U-Net: Convolutional Networks for Biomedical Image Segmentation, Lecture Notes in Computer Science (2015) ISBN:9783319245737 p.234-241, 10.1007/978-3-319-24574-4_28
  16. Çiçek Özgün, Abdulkadir Ahmed, Lienkamp Soeren S., Brox Thomas, Ronneberger Olaf, 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 (2016) ISBN:9783319467221 p.424-432, 10.1007/978-3-319-46723-8_49
  17. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
  18. Ibragimov Bulat, Xing Lei, Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks, 10.1002/mp.12045
  19. Kazemifar, S., et al.: Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning. arXiv preprint arXiv:1802.09587 (2018)
  20. Roth, H.R., et al.: Hierarchical 3D fully convolutional networks for multi-organ segmentation. arXiv preprint arXiv:1704.06382 (2017)
  21. Larsson Måns, Zhang Yuhang, Kahl Fredrik, Robust Abdominal Organ Segmentation Using Regional Convolutional Neural Networks, Image Analysis (2017) ISBN:9783319591285 p.41-52, 10.1007/978-3-319-59129-2_4
  22. Milletari Fausto, Rothberg Alex, Jia Jimmy, Sofka Michal, Integrating Statistical Prior Knowledge into Convolutional Neural Networks, Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 (2017) ISBN:9783319661810 p.161-168, 10.1007/978-3-319-66182-7_19
  23. Trullo R., Petitjean C., Ruan S., Dubray B., Nie D., Shen D., Segmentation of Organs at Risk in thoracic CT images using a SharpMask architecture and Conditional Random Fields, 10.1109/isbi.2017.7950685
  24. Klein, S., Staring, M.: Elastix, the manual (2018). http://elastix.isi.uu.nl/download/elastix-4.9.0-manual.pdf
Bibliographic reference Léger, Jean ; Brion, Eliott ; Javaid, Umair ; Lee, John Aldo ; De Vleeschouwer, Christophe ; et. al. Contour Propagation in CT Scans with Convolutional Neural Networks.Advanced Concepts for Intelligent Vision Systems (France, du 24/09/2018 au 27/09/2018). In: Proceedings of ACIVS, in Lecture Notes in Computer Science book series., 2018
Permanent URL http://hdl.handle.net/2078.1/203221