User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Homogenization of the nonlinear bending theory for plates

  • Open access
  • PDF
  • 607.88 K
  1. Friesecke Gero, James Richard D., Müller Stefan, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity : Geometric Rigidity and Plate Theory, 10.1002/cpa.10048
  2. Hornung Peter, Approximation of Flat W 2,2 Isometric Immersions by Smooth Ones, 10.1007/s00205-010-0374-y
  3. Hornung Peter, Fine Level Set Structure of Flat Isometric Immersions, 10.1007/s00205-010-0375-x
  4. Fonseca Irene, Kroemer Stefan, Multiple integrals under differential constraints: two-scale convergence and homogenization, 10.1512/iumj.2010.59.4249
  5. Anza Hafsa Omar, Mandallena Jean-Philippe, Homogenization of nonconvex integrals with convex growth, 10.1016/j.matpur.2011.03.003
  6. Hornung, P., Neukamm, S., Velčić, I.: Derivation of a homogenized nonlinear plate theory from 3d elasticity. Calc Var Partial Differ Equ 1–23 (2013)
  7. Hornung P., Velcic I.: Derivation of a homogenized von-Karman shell theory from 3d elasticity. arXiv preprint arXiv:1211.0045 (2012)
  8. Neukamm, S.: Homogenization, linearization and dimension reduction in elasticity with variational methods. PhD thesis, Technische Universität München (2010)
  9. Neukamm Stefan, Rigorous Derivation of a Homogenized Bending-Torsion Theory for Inextensible Rods from Three-Dimensional Elasticity, 10.1007/s00205-012-0539-y
  10. NEUKAMM STEFAN, VELČIĆ IGOR, DERIVATION OF A HOMOGENIZED VON-KÁRMÁN PLATE THEORY FROM 3D NONLINEAR ELASTICITY, 10.1142/s0218202513500449
  11. Velcic I.: A note on the derivation of homogenized bending plate model. arXiv preprint arXiv:1212.2594 (2012)
  12. Kirchheim B.: Geometry and rigidity of microstructures. Habilitation Thesis, Universität Leipzig (2001)
  13. Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)
  14. Müller Stefan, Pakzad Mohammad Reza, Regularity properties of isometric immersions, 10.1007/s00209-005-0804-y
  15. Hartman Philip, Nirenberg Louis, On Spherical Image Maps Whose Jacobians Do Not Change Sign, 10.2307/2372995
  16. Friesecke Gero, James Richard D., Müller Stefan, A Hierarchy of Plate Models Derived from Nonlinear Elasticity by Gamma-Convergence, 10.1007/s00205-005-0400-7
  17. Nguetseng Gabriel, A General Convergence Result for a Functional Related to the Theory of Homogenization, 10.1137/0520043
  18. Allaire Grégoire, Homogenization and Two-Scale Convergence, 10.1137/0523084
  19. Visintin Augusto, Towards a two-scale calculus, 10.1051/cocv:2006012
  20. Visintin A., Two-scale convergence of some integral functionals, 10.1007/s00526-006-0068-3
  21. Attouch, H.: Variational convergence for functions and operators. Pitman (Advanced Publishing Program), Boston, MA, Applicable Mathematics Series (1984)
Bibliographic reference Olbermann, Heiner ; Neukamm, Stefan. Homogenization of the nonlinear bending theory for plates. In: Calculus of Variations and Partial Differential Equations, Vol. 53, p. 719-753 (2015)
Permanent URL http://hdl.handle.net/2078/203024