User menu

Perturbative Quantum Field Theory via Vertex Algebras

  • Open access
  • PDF
  • 466.20 K
  1. Abramowitz M., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964)
  2. Axler Sheldon, Bourdon Paul, Ramey Wade, Harmonic Function Theory, ISBN:9781441929112, 10.1007/978-1-4757-8137-3
  3. Bakalov Bojko, Nikolov Nikolay M., Jacobi identity for vertex algebras in higher dimensions, 10.1063/1.2197687
  4. Borcherds R. E., Vertex algebras, Kac-Moody algebras, and the Monster, 10.1073/pnas.83.10.3068
  5. Borcherds Richard E., Vertex Algebras, Topological Field Theory, Primitive Forms and Related Topics (1998) ISBN:9781461268741 p.35-77, 10.1007/978-1-4612-0705-4_2
  6. Brydges D. (1993)
  7. Chetyrkin K.G., Kataev A.L., Tkachov F.V., New approach to evaluation of multiloop Feynman integrals: The Gegenbauer polynomial x-space technique, 10.1016/0550-3213(80)90289-8
  8. Connes Alain, Kreimer Dirk, Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem, 10.1007/s002200050779
  9. Erdélyi A., Higher Transcendental Functions, 1 (1953)
  10. Frenkel I., Heidelb. Beitr. Mineral. Petrogr., 134, 508 (1988)
  11. Fuglede Bent, Integration on then th power of a hyperbolic space in terms of invariants under diagonal action of isometries (Lorentz transformations), 10.1007/bf02097102
  12. Gaberdiel Matthias R, An introduction to conformal field theory, 10.1088/0034-4885/63/4/203
  13. Gradshteyn I. S., Table of Integrals, Series and Products (1965)
  14. Holland, J. “Construction of operator product expansion coefficients via consistency conditions,” Diplomarbeit, Universität Göttingen, 2008.
  15. Hörmander L., The Analysis of Linear Partial Differential Operators I (1983)
  16. Quantum Field Theory, ISBN:9783540152606, 10.1007/978-3-642-70307-2
  17. Kac V., Vertex Algebras for Beginners (1997)
  18. Keller G., Kopper C., Perturbative renormalization of composite operators via flow equations II: Short distance expansion, 10.1007/bf02096643
  19. Keller G., Helv. Phys. Acta, 65, 32 (1992)
  20. Keller Kai J., Euclidean Epstein–Glaser renormalization, 10.1063/1.3202415
  21. Magnen Jacques, Rivasseau Vincent, Constructive ϕ 4 Field Theory without Tears, 10.1007/s00023-008-0360-1
  22. Nikolov Nikolay M., Vertex Algebras in Higher Dimensions and Globally Conformal Invariant Quantum Field Theory, 10.1007/s00220-004-1133-4
  23. Rivasseau V., From Perturbative to Constructive Renormalization : , ISBN:9781400862085, 10.1515/9781400862085
  24. Szmytkowski Radosław, On the derivative of the Legendre function of the first kind with respect to its degree, 10.1088/0305-4470/39/49/006
  25. Weinzierl Stefan, The art of computing loop integrals, 10.1090/fic/050/15
  26. Whittaker E. T., A Course of Modern Analysis (1927)
  27. Wilson Kenneth G., Non-Lagrangian Models of Current Algebra, 10.1103/physrev.179.1499
  28. Wilson Kenneth G., Zimmermann Wolfhart, Operator product expansions and composite field operators in the general framework of quantum field theory, 10.1007/bf01878448
  29. Zinn-Justin J., Quantum Field Theory and Critical Phenomena (1993)
Bibliographic reference Olbermann, Heiner ; Hollands, Stefan ; et. al. Perturbative Quantum Field Theory via Vertex Algebras. In: Journal of Mathematics and Physics, Vol. 50, p. 112304 (2009)
Permanent URL http://hdl.handle.net/2078/202997