We report on the in situ analysis of the growth process of carbon nanostructures catalyzed by Ru nanoparticles using syngas, a mixture of hydrogen and CO, as the carbon source at a medium temperature (500 °C). The structural modifications of the dual nanotube/nanoparticle system and the general dynamics of the involved processes have been directly followed during the growth, in real time and at the atomic scale, by transmission electron microscopy in an environmental gas cell at atmospheric pressure. After a reduction step under hydrogen and syngas, the particles became very active for the carbon growth. The growth rate is independent of the particle size which mainly influences the nanotube wall thickness. Other subtle information on the general behavior of the system has been obtained, as for instance the fact that the regular changes in the direction of the particle originate generally from the particle shape fluctuation. The main result is the evidence of a new growth mode in relation to the presence and the high instability of the ruthenium carbide phase which acts as a carbon reservoir. For the first time, a relaxation oscillation of the growth rate has been observed and correlated with the metal–carbide structural transition at the particle sub-surface.
Ji Jian, Duan Xuezhi, Qian Gang, Zhou Xinggui, Chen De, Yuan Weikang, In Situ Production of Ni Catalysts at the Tips of Carbon Nanofibers and Application in Catalytic Ammonia Decomposition, 10.1021/ie3024627
Jourdain Vincent, Bichara Christophe, Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, 10.1016/j.carbon.2013.02.046
Sharma Renu, Iqbal Zafar, In situ observations of carbon nanotube formation using environmental transmission electron microscopy, 10.1063/1.1646465
Pattinson Sebastian W., Diaz Rosa E., Stelmashenko Nadia A., Windle Alan H., Ducati Caterina, Stach Eric A., Koziol Krzysztof K. K., In Situ Observation of the Effect of Nitrogen on Carbon Nanotube Synthesis, 10.1021/cm401216q
He Maoshuai, Jiang Hua, Liu Bilu, Fedotov Pavel V., Chernov Alexander I., Obraztsova Elena D., Cavalca Filippo, Wagner Jakob B., Hansen Thomas W., Anoshkin Ilya V., Obraztsova Ekaterina A., Belkin Alexey V., Sairanen Emma, Nasibulin Albert G., Lehtonen Juha, Kauppinen Esko I., Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles, 10.1038/srep01460
Yusop Mohd Zamri Mohd, Ghosh Pradip, Yaakob Yazid, Kalita Golap, Sasase Masato, Hayashi Yasuhiko, Tanemura Masaki, In Situ TEM Observation of Fe-Included Carbon Nanofiber: Evolution of Structural and Electrical Properties in Field Emission Process, 10.1021/nn302889e
Zhang Lili, Hou Peng-Xiang, Li Shisheng, Shi Chao, Cong Hong-Tao, Liu Chang, Cheng Hui-Ming, In Situ TEM Observations on the Sulfur-Assisted Catalytic Growth of Single-Wall Carbon Nanotubes, 10.1021/jz500419r
Diarra M., Zappelli A., Amara H., Ducastelle F., Bichara C., Importance of Carbon Solubility and Wetting Properties of Nickel Nanoparticles for Single Wall Nanotube Growth, 10.1103/physrevlett.109.185501
Balakrishnan Viswanath, Bedewy Mostafa, Meshot Eric R., Pattinson Sebastian W., Polsen Erik S., Laye Fabrice, Zakharov Dmitri N., Stach Eric A., Hart A. John, Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth, 10.1021/acsnano.6b07251
Bedewy Mostafa, Viswanath B., Meshot Eric R., Zakharov Dmitri N., Stach Eric A., Hart A. John, Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy, 10.1021/acs.chemmater.6b00798
Hofmann Stephan, Sharma Renu, Ducati Caterina, Du Gaohui, Mattevi Cecilia, Cepek Cinzia, Cantoro Mirco, Pisana Simone, Parvez Atlus, Cervantes-Sodi Felipe, Ferrari Andrea C., Dunin-Borkowski Rafal, Lizzit Silvano, Petaccia Luca, Goldoni Andrea, Robertson John, In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation, 10.1021/nl0624824
Tang Dai-Ming, Liu Chang, Yu Wan-Jing, Zhang Li-Li, Hou Peng-Xiang, Li Jin-Cheng, Li Feng, Bando Yoshio, Golberg Dmitri, Cheng Hui-Ming, Structural Changes in Iron Oxide and Gold Catalysts during Nucleation of Carbon Nanotubes Studied by In Situ Transmission Electron Microscopy, 10.1021/nn403927y
Hofmann Stephan, Blume Raoul, Wirth Christoph T., Cantoro Mirco, Sharma Renu, Ducati Caterina, Hävecker Michael, Zafeiratos Spiros, Schnoerch Peter, Oestereich Andreas, Teschner Detre, Albrecht Martin, Knop-Gericke Axel, Schlögl Robert, Robertson John, State of Transition Metal Catalysts During Carbon Nanotube Growth, 10.1021/jp808560p
Helveg Stig, López-Cartes Carlos, Sehested Jens, Hansen Poul L., Clausen Bjerne S., Rostrup-Nielsen Jens R., Abild-Pedersen Frank, Nørskov Jens K., Atomic-scale imaging of carbon nanofibre growth, 10.1038/nature02278
Yoshida Hideto, Takeda Seiji, Uchiyama Tetsuya, Kohno Hideo, Homma Yoshikazu, Atomic-Scale In-situ Observation of Carbon Nanotube Growth from Solid State Iron Carbide Nanoparticles, 10.1021/nl080452q
Yoshida Hideto, Kohno Hideo, Takeda Seiji, In situ structural analysis of crystalline Fe–Mo–C nanoparticle catalysts during the growth of carbon nanotubes, 10.1016/j.micron.2012.04.008
Kohigashi Y., Yoshida H., Homma Y., Takeda S., Structurally inhomogeneous nanoparticulate catalysts in cobalt-catalyzed carbon nanotube growth, 10.1063/1.4893460
Lin Pin Ann, Gomez-Ballesteros Jose L., Burgos Juan C., Balbuena Perla B., Natarajan Bharath, Sharma Renu, Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles, 10.1016/j.jcat.2017.03.009
Buffat Ph., Borel J-P., Size effect on the melting temperature of gold particles, 10.1103/physreva.13.2287
Wang Zhong L., Petroski Janet M., Green Travis C., El-Sayed Mostafa A., Shape Transformation and Surface Melting of Cubic and Tetrahedral Platinum Nanocrystals, 10.1021/jp981594j
Reiss H., Mirabel P., Whetten R. L., Capillarity theory for the "coexistence" of liquid and solid clusters, 10.1021/j100337a016
Nanda K. K., Sahu S. N., Behera S. N., Liquid-drop model for the size-dependent melting of low-dimensional systems, 10.1103/physreva.66.013208
BAKER R, The relationship between particle motion on a graphite surface and Tammann temperature, 10.1016/0021-9517(82)90332-3
Wagner R. S., Ellis W. C., VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, 10.1063/1.1753975
Wang Fudong, Dong Angang, Buhro William E., Solution–Liquid–Solid Synthesis, Properties, and Applications of One-Dimensional Colloidal Semiconductor Nanorods and Nanowires, 10.1021/acs.chemrev.5b00701
Feng Xiaofeng, Chee See Wee, Sharma Renu, Liu Kai, Xie Xu, Li Qunqing, Fan Shoushan, Jiang Kaili, In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts, 10.1007/s12274-011-0133-x
Ichihashi Toshinari, Fujita Jun-ichi, Ishida Masahiko, Ochiai Yukinori, In situObservation of Carbon-Nanopillar Tubulization Caused by Liquidlike Iron Particles, 10.1103/physrevlett.92.215702
Dai Hongjie, Rinzler Andrew G., Nikolaev Pasha, Thess Andreas, Colbert Daniel T., Smalley Richard E., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, 10.1016/0009-2614(96)00862-7
Bouanis Fatima Z., Baraton Laurent, Huc Vincent, Pribat Didier, Cojocaru Costel S., High-quality single-walled carbon nanotubes synthesis by hot filament CVD on Ru nanoparticle catalyst, 10.1016/j.tsf.2011.01.326
Bouanis Fatima Z., Cojocaru Costel S., Huc Vincent, Norman Evgeny, Chaigneau Marc, Maurice Jean-Luc, Mallah Talal, Pribat Didier, Direct Synthesis and Integration of Individual, Diameter-Controlled Single-Walled Nanotubes (SWNTs), 10.1021/cm502282x
Qian Yong, Wang Chunyan, Ren Guangyuan, Huang Bin, Surface growth of single-walled carbon nanotubes from ruthenium nanoparticles, 10.1016/j.apsusc.2010.01.074
Mabudafhasi Mbangiseni L, Bodkin Richard, Nicolaides Christakis P, Liu Xin-Ying, Witcomb Michael J, Coville Neil J, The ruthenium catalysed synthesis of carbon nanostructures, 10.1016/s0008-6223(02)00192-6
Sassoye Capucine, Muller Guillaume, Debecker Damien P., Karelovic Alejandro, Cassaignon Sophie, Pizarro Christian, Ruiz Patricio, Sanchez Clément, A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia, 10.1039/c1gc15769h
Kim A., Sanchez C., Patriarche G., Ersen O., Moldovan S., Wisnet A., Sassoye C., Debecker D. P., Selective CO2 methanation on Ru/TiO2 catalysts: unravelling the decisive role of the TiO2 support crystal structure, 10.1039/c6cy01677d
Kim Ara, Debecker Damien P., Devred François, Dubois Vincent, Sanchez Clément, Sassoye Capucine, CO 2 methanation on Ru/TiO 2 catalysts: On the effect of mixing anatase and rutile TiO 2 supports, 10.1016/j.apcatb.2017.08.058
Allard Lawrence F., Overbury Steven H., Bigelow Wilbur C., Katz Michael B., Nackashi David P., Damiano John, Novel MEMS-Based Gas-Cell/Heating Specimen Holder Provides Advanced Imaging Capabilities for In Situ Reaction Studies, 10.1017/s1431927612001249
Schaper Andreas K., Hou Haoqing, Greiner Andreas, Phillipp Fritz, The role of iron carbide in multiwalled carbon nanotube growth, 10.1016/j.jcat.2003.11.011
Pinheiro P., Schouler M.C., Gadelle P., Mermoux M., Dooryhée E., Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts, 10.1016/s0008-6223(00)00002-6
Pinheiro J.P, Schouler M.C, Gadelle P, Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts, 10.1016/s0008-6223(03)00410-x
Sanjay Kumar, J. Phys.: Condens. Matter, 24, 362202 (2012)
Peng Zhenmeng, Somodi Ferenc, Helveg Stig, Kisielowski Christian, Specht Petra, Bell Alexis T., High-resolution in situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles, 10.1016/j.jcat.2011.10.008
“Wiley: Kirk-Othmer Encyclopedia of Chemical Technology, Index to Volumes 1–26, 5th Edition - Kirk-Othmer,” can be found under http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471484962.html
Bibliographic reference
M. Bahri ; K. Dembélé ; C. Sassoye ; Debecker, Damien P. ; S. Moldovan ; et. al. In situ insight into the unconventional ruthenium catalyzed growth of carbon nanostructures. In: Nanoscale, Vol. 10, p. 14957-14965 (2018)