User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

From elastic homogenization to upscaling of non-Newtonian fluid flows in porous media

  1. Ammar Amine, Abisset-Chavanne Emmanuelle, Chinesta Francisco, Keunings Roland, Flow modelling of quasi-Newtonian fluids in two-scale fibrous fabrics : Advanced simulations, 10.1007/s12289-016-1300-0
  2. Binetruy C, Chinesta F, Keunings R (2015) Flows in Polymers, Reinforced Polymers and Composites. A multiscale approach. Springer, Springerbriefs
  3. Bőhm HJ (2009) A Short Introduction to Basic Aspects of Continuum Micromechanics. ISLB Report 208. TU Wien, Vienna. http://www.ilsb.tuwien.ac.at/links/downloads/ilsbrep206.pdf
  4. Chinesta F., Ammar A., Lemarchand F., Beauchene P., Boust F., Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization, 10.1016/j.cma.2007.07.022
  5. Chinesta F., Ammar A., Leygue A., Keunings R., An overview of the proper generalized decomposition with applications in computational rheology, 10.1016/j.jnnfm.2010.12.012
  6. Chinesta F., Leygue A., Bordeu F., Aguado J. V., Cueto E., Gonzalez D., Alfaro I., Ammar A., Huerta A., PGD-Based Computational Vademecum for Efficient Design, Optimization and Control, 10.1007/s11831-013-9080-x
  7. Chinesta Francisco, Keunings Roland, Leygue Adrien, The Proper Generalized Decomposition for Advanced Numerical Simulations, ISBN:9783319028644, 10.1007/978-3-319-02865-1
  8. de Borst René, Challenges in computational materials science: Multiple scales, multi-physics and evolving discontinuities, 10.1016/j.commatsci.2007.07.022
  9. Feyel Frédéric, Multiscale FE2 elastoviscoplastic analysis of composite structures, 10.1016/s0927-0256(99)00077-4
  10. Fish Jacob, Bridging the scales in nano engineering and science, 10.1007/s11051-006-9090-9
  11. Fish Jacob, Yuan Zheng, Multiscale enrichment based on partition of unity, 10.1002/nme.1230
  12. Geers M.G.D., Kouznetsova V.G., Brekelmans W.A.M., Multi-scale computational homogenization: Trends and challenges, 10.1016/j.cam.2009.08.077
  13. El Halabi F., González D., Chico A., Doblaré M., FE2 multiscale in linear elasticity based on parametrized microscale models using proper generalized decomposition, 10.1016/j.cma.2013.01.011
  14. Ibañez Rubén, Abisset-Chavanne Emmanuelle, Aguado Jose Vicente, Gonzalez David, Cueto Elias, Chinesta Francisco, A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity, 10.1007/s11831-016-9197-9
  15. Kanouté P., Boso D. P., Chaboche J. L., Schrefler B. A., Multiscale Methods for Composites: A Review, 10.1007/s11831-008-9028-8
  16. Lamari H., Ammar A., Cartraud P., Legrain G., Chinesta F., Jacquemin F., Routes for Efficient Computational Homogenization of Nonlinear Materials Using the Proper Generalized Decompositions, 10.1007/s11831-010-9051-4
  17. Lopez Elena, Abisset-Chavanne Emmanuelle, Lebel François, Upadhyay Ram, Comas Sébastien, Binetruy Christophe, Chinesta Francisco, Flow modeling of linear and nonlinear fluids in two and three scale fibrous fabrics, 10.1007/s12289-015-1224-0
  18. Lopez Elena, Leygue Adrien, Abisset-Chavanne Emmanuelle, Comas-Cardona Sebastien, Aufrere Christophe, Binetruy Christophe, Chinesta Francisco, Flow modeling of linear and nonlinear fluids in two scale fibrous fabrics : Advanced simulations, 10.1007/s12289-015-1280-5
  19. McVeigh Cahal, Liu Wing Kam, Linking microstructure and properties through a predictive multiresolution continuum, 10.1016/j.cma.2007.12.020
  20. Michel J.C., Suquet P., Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis, 10.1016/j.cma.2003.12.071
  21. Amini A. Mobasher, Dureisseix D., Cartraud P., Multi-scale domain decomposition method for large-scale structural analysis with a zooming technique: Application to plate assembly, 10.1002/nme.2565
  22. Perez M., Scheuer A., Abisset-Chavanne E., Chinesta F., Keunings R., A multi-scale description of orientation in simple shear flows of confined rod suspensions, 10.1016/j.jnnfm.2016.01.011
  23. Ryssel E., Brunn P.O., Comparison of a quasi-Newtonian fluid with a viscoelastic fluid in planar contraction flow, 10.1016/s0377-0257(99)00003-8
  24. Scheuer A., Abisset-Chavanne E., Chinesta F., Keunings R., Second-gradient modelling of orientation development and rheology of dilute confined suspensions, 10.1016/j.jnnfm.2016.10.004
  25. Strouboulis Theofanis, Zhang Lin, Babuška Ivo, p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems, 10.1002/nme.1017
  26. Temizer İ., Wriggers P., An adaptive method for homogenization in orthotropic nonlinear elasticity, 10.1016/j.cma.2007.03.017
  27. Temizer I., Zohdi T. I., A numerical method for homogenization in non-linear elasticity, 10.1007/s00466-006-0097-y
  28. Thompson Roney L., Souza Mendes Paulo R., Persistence of straining and flow classification, 10.1016/j.ijengsci.2004.07.011
  29. Yvonnet J., Gonzalez D., He Q.-C., Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, 10.1016/j.cma.2009.03.017
  30. An Introduction to Computational Micromechanics, ISBN:9783540774822, 10.1007/978-3-540-32360-0
Bibliographic reference Ibañez, Ruben ; Scheuer, Adrien ; Lopez, Elena ; Abisset-Chavanne, Emmanuelle ; Chinesta, Francisco ; et. al. From elastic homogenization to upscaling of non-Newtonian fluid flows in porous media. In: International Journal of Material Forming, Vol. 11, no. 5, p. 607-617 (2018)
Permanent URL http://hdl.handle.net/2078.1/201656