User menu

Accès à distance en utilisant le proxy de l'UCL :

https://proxy.bib.ucl.ac.be/proxy-dial

A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 2: Extension to time–frequency analysis

  • Open access
  • PDF
  • 12.89 M
  1. Berger André L., Long-Term Variations of Caloric Insolation Resulting from the Earth's Orbital Elements, 10.1016/0033-5894(78)90064-9
  2. Berger, A. L., Loutre, M. F., and Mélice, J. L.: Instability of the atsronomical periods from 1.5 Myr BP to 0.5 Myr AP, Paleoclimates, 2, 239–280, 1998.
  3. Brockwell Peter J., Davis Richard A., Time Series: Theory and Methods, ISBN:9781441903198, 10.1007/978-1-4419-0320-4
  4. Carmona R.A., Hwang W.L., Torresani B., Characterization of signals by the ridges of their wavelet transforms, 10.1109/78.640725
  5. Carmona R.A., Hwang W.L., Torresani B., Multiridge detection and time-frequency reconstruction, 10.1109/78.740131
  6. Cohen E. A. K., Walden A. T., A Statistical Study of Temporally Smoothed Wavelet Coherence, 10.1109/tsp.2010.2043139
  7. Delprat N., Escudie B., Guillemain P., Kronland-Martinet R., Tchamitchian P., Torresani B., Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies, 10.1109/18.119728
  8. Elderfield H., Ferretti P., Greaves M., Crowhurst S., McCave I. N., Hodell D., Piotrowski A. M., Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition, 10.1126/science.1221294
  9. Foster Grant, Time Series Analysis by Projection. I. Statistical Properties of Fourier Analysis, 10.1086/117805
  10. Foster Grant, Time Series Analysis by Projection. II. Tensor Methods for Time Series Analysis, 10.1086/117806
  11. Foster Grant, Wavelets for period analysis of unevenly sampled time series, 10.1086/118137
  12. Grinsted A., Moore J. C., Jevrejeva S., Application of the cross wavelet transform and wavelet coherence to geophysical time series, 10.5194/npg-11-561-2004
  13. Grootes P. M., Stuiver M., Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution, 10.1029/97jc00880
  14. Grossmann A., Morlet J., Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, 10.1137/0515056
  15. Holschneider, M.: Wavelets – An analysis tool, Oxford Mathematical Monographs, Oxford University Press, New York, USA, 1995.
  16. Huybers Peter, Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression, 10.1016/j.quascirev.2006.07.013
  17. Jian Zhimin, Zhao Quanhong, Cheng Xinrong, Wang Jiliang, Wang Pinxian, Su Xin, Pliocene–Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea, 10.1016/s0031-0182(03)00259-1
  18. Laskar J., Robutel P., Joutel F., Gastineau M., Correia A. C. M., Levrard B., A long-term numerical solution for the insolation quantities of the Earth , 10.1051/0004-6361:20041335
  19. Lenoir Guillaume, Crucifix Michel, A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 1: Frequency analysis, 10.5194/npg-25-145-2018
  20. Ta-Hsin Li, Hee-Seok Oh, Wavelet spectrum and its characterization property for random processes, 10.1109/tit.2002.804046
  21. Lilly Jonathan M., Olhede Sofia C., On the Analytic Wavelet Transform, 10.1109/tit.2010.2050935
  22. Lisiecki Lorraine E., Raymo Maureen E., A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records : PLIOCENE-PLEISTOCENE BENTHIC STACK, 10.1029/2004pa001071
  23. Mallat, S.: A Wavelet Tour of Signal Processing, Third edn., Academic Press, Boston, USA, 2009.
  24. Maraun D., Kurths J., Cross wavelet analysis: significance testing and pitfalls, 10.5194/npg-11-505-2004
  25. Maraun D., Kurths J., Holschneider M., Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation, and significance testing, 10.1103/physreve.75.016707
  26. Mathias Adolf, Grond Florian, Guardans Ramon, Seese Detlef, Canela Miguel, Diebner Hans H., Algorithms for Spectral Analysis of Irregularly Sampled Time Series, 10.18637/jss.v011.i02
  27. Meyers S. D., Kelly B. G., O'Brien J. J., An Introduction to Wavelet Analysis in Oceanography and Meteorology: With Application to the Dispersion of Yanai Waves, 10.1175/1520-0493(1993)121<2858:aitwai>2.0.co;2
  28. Provost Serge B., Ha Hyung-Tae, Sanjel Deepak, On approximating the distribution of indefinite quadratic forms, 10.1080/02331880902732123
  29. Regoli Fabienne, de Garidel-Thoron Thibault, Tachikawa Kazuyo, Jian Zhiming, Ye Liming, Droxler André W., Lenoir Guillaume, Crucifix Michel, Barbarin Nicolas, Beaufort Luc, Progressive shoaling of the equatorial Pacific thermocline over the last eight glacial periods : PACIFIC THERMOCLINE SHOALING OVER 800 KA, 10.1002/2014pa002696
  30. Schaefli B., Maraun D., Holschneider M., What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology, 10.1016/j.advwatres.2007.06.004
  31. Torrence, C. and Compo, G.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079&lt;0061:APGTWA&gt;2.0.CO;2, 1998.
  32. Torrence Christopher, Webster Peter J., Interdecadal Changes in the ENSO–Monsoon System, 10.1175/1520-0442(1999)012<2679:icitem>2.0.co;2
  33. Witt A., Schumann A. Y., Holocene climate variability on millennial scales recorded in Greenland ice cores, 10.5194/npg-12-345-2005
Bibliographic reference Lenoir, Guillaume ; Crucifix, Michel. A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 2: Extension to time–frequency analysis. In: Nonlinear Processes in Geophysics, Vol. 25, no.1, p. 175-200 (2018)
Permanent URL http://hdl.handle.net/2078.1/199245