User menu

CMB constraints on the inflaton couplings and reheating temperature in $alpha$-attractor inflation

  • Open access
  • PDF
  • 2.15 M
  1. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [ arXiv:1502.01589 ] [ INSPIRE ].
  2. Starobinsky A.A., A new type of isotropic cosmological models without singularity, 10.1016/0370-2693(80)90670-x
  3. Guth Alan H., Inflationary universe: A possible solution to the horizon and flatness problems, 10.1103/physrevd.23.347
  4. Linde A.D., A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, 10.1016/0370-2693(82)91219-9
  5. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [ arXiv:1502.02114 ] [ INSPIRE ].
  6. Olive K.A., Review of Particle Physics, 10.1088/1674-1137/40/10/100001
  7. Martin Jérôme, Ringeval Christophe, Vennin Vincent, Encyclopædia Inflationaris, 10.1016/j.dark.2014.01.003
  8. M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative Dynamics Of Reheating After Inflation: A Review, Int. J. Mod. Phys. D 24 (2014) 1530003 [ arXiv:1410.3808 ] [ INSPIRE ].
  9. Bond J. Richard, Frolov Andrei V., Huang Zhiqi, Kofman Lev, Non-Gaussian Curvature Spikes from Chaotic Billiards in Inflation Preheating, 10.1103/physrevlett.103.071301
  10. Cicoli M, Tasinato G, Zavala I, Burgess C.P, Quevedo F, Modulated reheating and large non-gaussianity in string cosmology, 10.1088/1475-7516/2012/05/039
  11. Ringeval Christophe, Suyama Teruaki, Yokoyama Jun'ichi, Magneto-reheating constraints from curvature perturbations, 10.1088/1475-7516/2013/09/020
  12. Mazumdar Arindam, Modak Kamakshya Prasad, Deriving super-horizon curvature perturbations from the dynamics of preheating, 10.1088/1475-7516/2015/04/053
  13. Mazumdar Arindam, Modak Kamakshya Prasad, Constraints on variations in inflaton decay rate from modulated preheating, 10.1088/1475-7516/2016/06/030
  14. J. Martin and C. Ringeval, Inflation after WMAP3: Confronting the Slow-Roll and Exact Power Spectra to CMB Data, JCAP 08 (2006) 009 [ astro-ph/0605367 ] [ INSPIRE ].
  15. Martin Jérôme, Ringeval Christophe, First CMB constraints on the inflationary reheating temperature, 10.1103/physrevd.82.023511
  16. Martin Jérôme, Ringeval Christophe, Vennin Vincent, Observing Inflationary Reheating, 10.1103/physrevlett.114.081303
  17. Errard Josquin, Feeney Stephen M., Peiris Hiranya V., Jaffe Andrew H., Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization, 10.1088/1475-7516/2016/03/052
  18. CORE collaboration, F. Finelli et al., Exploring Cosmic Origins with CORE: Inflation, arXiv:1612.08270 [ INSPIRE ].
  19. Kinney William H, Riotto Antonio, Theoretical uncertainties in inflationary predictions, 10.1088/1475-7516/2006/03/011
  20. H. Peiris and R. Easther, Slow Roll Reconstruction: Constraints on Inflation from the 3 Year WMAP Dataset, JCAP 10 (2006) 017 [ astro-ph/0609003 ] [ INSPIRE ].
  21. Adshead Peter, Easther Richard, Pritchard Jonathan, Loeb Abraham, Inflation and the scale dependent spectral index: prospects and strategies, 10.1088/1475-7516/2011/02/021
  22. R. Easther and H.V. Peiris, Bayesian Analysis of Inflation II: Model Selection and Constraints on Reheating, Phys. Rev. D 85 (2012) 103533 [ arXiv:1112.0326 ] [ INSPIRE ].
  23. L. Dai, M. Kamionkowski and J. Wang, Reheating constraints to inflationary models, Phys. Rev. Lett. 113 (2014) 041302 [ arXiv:1404.6704 ] [ INSPIRE ].
  24. J.B. Muñoz and M. Kamionkowski, Equation-of-State Parameter for Reheating, Phys. Rev. D 91 (2015) 043521 [ arXiv:1412.0656 ] [ INSPIRE ].
  25. Cook Jessica L., Dimastrogiovanni Emanuela, Easson Damien A., Krauss Lawrence M., Reheating predictions in single field inflation, 10.1088/1475-7516/2015/04/047
  26. Cai Rong-Gen, Guo Zong-Kuan, Wang Shao-Jiang, Reheating phase diagram for single-field slow-roll inflationary models, 10.1103/physrevd.92.063506
  27. Ueno Yoshiki, Yamamoto Kazuhiro, Constraints onα-attractor inflation and reheating, 10.1103/physrevd.93.083524
  28. Hardwick Robert J., Vennin Vincent, Koyama Kazuya, Wands David, Constraining curvatonic reheating, 10.1088/1475-7516/2016/08/042
  29. Lozanov Kaloian D., Amin Mustafa A., Equation of State and Duration to Radiation Domination after Inflation, 10.1103/physrevlett.119.061301
  30. Dalianis Ioannis, Koutsoumbas George, Ntrekis Konstantinos, Papantonopoulos Eleftherios, Reheating predictions in gravity theories with derivative coupling, 10.1088/1475-7516/2017/02/027
  31. R. Kabir, A. Mukherjee and D. Lohiya, Reheating constraints on Kähler Moduli Inflation, arXiv:1609.09243 [ INSPIRE ].
  32. Choi Soo-Min, Lee Hyun Min, Inflection point inflation and reheating, 10.1140/epjc/s10052-016-4150-5
  33. P. Cabella, A. Di Marco and G. Pradisi, Fiber inflation and reheating, Phys. Rev. D 95 (2017) 123528 [ arXiv:1704.03209 ] [ INSPIRE ].
  34. Nozari Kourosh, Rashidi Narges, Perturbation, non-Gaussianity, and reheating in a Gauss-Bonnet α -attractor model, 10.1103/physrevd.95.123518
  35. Di Marco Alessandro, Cabella Paolo, Vittorio Nicola, Constraining the general reheating phase in the α -attractor inflationary cosmology, 10.1103/physrevd.95.103502
  36. Bhattacharya Sukannya, Dutta Koushik, Maharana Anshuman, Constraints on Kähler moduli inflation from reheating, 10.1103/physrevd.96.083522
  37. Drewes Marco, What can the CMB tell about the microphysics of cosmic reheating?, 10.1088/1475-7516/2016/03/013
  38. Kallosh Renata, Linde Andrei, Superconformal generalizations of the Starobinsky model, 10.1088/1475-7516/2013/06/028
  39. Kallosh Renata, Linde Andrei, Universality class in conformal inflation, 10.1088/1475-7516/2013/07/002
  40. Kallosh Renata, Linde Andrei, Roest Diederik, Superconformal inflationary α-attractors, 10.1007/jhep11(2013)198
  41. Kallosh Renata, Linde Andrei, Superconformal generalization of the chaotic inflation model, 10.1088/1475-7516/2013/06/027
  42. Kallosh Renata, Linde Andrei, Non-minimal Inflationary Attractors, 10.1088/1475-7516/2013/10/033
  43. Galante Mario, Kallosh Renata, Linde Andrei, Roest Diederik, Unity of Cosmological Inflation Attractors, 10.1103/physrevlett.114.141302
  44. Cheung Yeuk-Kwan E., Drewes Marco, Kang Jin U, Kim Jong Chol, Effective action for cosmological scalar fields at finite temperature, 10.1007/jhep08(2015)059
  45. Mazumdar Anupam, Zaldívar Bryan, Quantifying the reheating temperature of the universe, 10.1016/j.nuclphysb.2014.07.001
  46. Harigaya Keisuke, Mukaida Kyohei, Thermalization after/during reheating, 10.1007/jhep05(2014)006
  47. Harigaya Keisuke, Kawasaki Masahiro, Mukaida Kyohei, Yamada Masaki, Dark matter production in late time reheating, 10.1103/physrevd.89.083532
  48. Mukaida Kyohei, Yamada Masaki, Thermalization process after inflation and effective potential of scalar field, 10.1088/1475-7516/2016/02/003
  49. Marzola Luca, Racioppi Antonio, Minimal but non-minimal inflation and electroweak symmetry breaking, 10.1088/1475-7516/2016/10/010
  50. Artymowski Michał, Racioppi Antonio, Scalar-tensor linear inflation, 10.1088/1475-7516/2017/04/007
  51. Martin Jérôme, Ringeval Christophe, Vennin Vincent, Shortcomings of new parametrizations of inflation, 10.1103/physrevd.94.123521
  52. Nurmi Sami, Tenkanen Tommi, Tuominen Kimmo, Inflationary imprints on dark matter, 10.1088/1475-7516/2015/11/001
  53. Drewes Marco, Mendizabal Sebastián, Weniger Christoph, The Boltzmann equation from quantum field theory, 10.1016/j.physletb.2012.11.046
  54. D. Boyanovsky, M. D’Attanasio, H.J. de Vega, R. Holman and D.S. Lee, Reheating and thermalization: Linear versus nonlinear relaxation, Phys. Rev. D 52 (1995) 6805 [ hep-ph/9507414 ] [ INSPIRE ].
  55. Mukaida Kyohei, Nakayama Kazunori, Dynamics of oscillating scalar field in thermal environment, 10.1088/1475-7516/2013/01/017
  56. Mukaida Kyohei, Nakayama Kazunori, Dissipative effects on reheating after inflation, 10.1088/1475-7516/2013/03/002
  57. Drewes Marco, Kang Jin U, The kinematics of cosmic reheating, 10.1016/j.nuclphysb.2013.07.009
  58. Mukaida Kyohei, Nakayama Kazunori, Takimoto Masahiro, Fate of Z 2 symmetric scalar field, 10.1007/jhep12(2013)053
  59. Drewes Marco, On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production, 10.1088/1475-7516/2014/11/020
  60. Kane Gordon, Sinha Kuver, Watson Scott, Cosmological moduli and the post-inflationary universe: A critical review, 10.1142/s0218271815300220
  61. Scherrer Robert J., Turner Michael S., Decaying particles do not ‘‘heat up’’ the Universe, 10.1103/physrevd.31.681
  62. Traschen Jennie H., Brandenberger Robert H., Particle production during out-of-equilibrium phase transitions, 10.1103/physrevd.42.2491
  63. Kofman Lev, Linde Andrei, Starobinsky Alexei A., Reheating after Inflation, 10.1103/physrevlett.73.3195
  64. Kofman Lev, Linde Andrei, Starobinsky Alexei A., Towards the theory of reheating after inflation, 10.1103/physrevd.56.3258
  65. Felder Gary, García-Bellido Juan, Greene Patrick B., Kofman Lev, Linde Andrei, Tkachev Igor, Dynamics of Symmetry Breaking and Tachyonic Preheating, 10.1103/physrevlett.87.011601
  66. Drewes Marco, Novel collective excitations in a hot scalar field theory, 10.1016/j.physletb.2014.03.019
  67. Linder Carol, Particle Physics and Inflationary Cosmology, ISBN:9783718604906, 10.1201/b16971
  68. Kolb Edward W., Notari Alessio, Riotto Antonio, Reheating stage after inflation, 10.1103/physrevd.68.123505
  69. Yokoyama Jun'ichi, Can oscillating scalar fields decay into particles with a large thermal mass?, 10.1016/j.physletb.2006.02.039
  70. M. Drewes, On the Role of Quasiparticles and thermal Masses in Nonequilibrium Processes in a Plasma, arXiv:1012.5380 [ INSPIRE ].
  71. Bödeker Dietrich, Moduli decay in the hot early Universe, 10.1088/1475-7516/2006/06/027
  72. Drewes Marco, Kang Jin U, Sterile neutrino Dark Matter production from scalar decay in a thermal bath, 10.1007/jhep05(2016)051
  73. Yokoyama Jun’ichi, Fate of oscillating scalar fields in a thermal bath and their cosmological implications, 10.1103/physrevd.70.103511
  74. D. Boyanovsky, K. Davey and C.M. Ho, Particle abundance in a thermal plasma: Quantum kinetics vs. Boltzmann equation, Phys. Rev. D 71 (2005) 023523 [ hep-ph/0411042 ] [ INSPIRE ].
  75. Anisimov A., Buchmüller W., Drewes M., Mendizabal S., Nonequilibrium dynamics of scalar fields in a thermal bath, 10.1016/j.aop.2009.01.001
  76. Ho Chiu Man, Scherrer Robert J., Cosmological particle decays at finite temperature, 10.1103/physrevd.92.025019
  77. García-Bellido Juan, Figueroa Daniel G., Rubio Javier, Preheating in the standard model with the Higgs inflaton coupled to gravity, 10.1103/physrevd.79.063531
  78. V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press (2005).
  79. Canetti Laurent, Drewes Marco, Shaposhnikov Mikhail, Matter and antimatter in the universe, 10.1088/1367-2630/14/9/095012
  80. Kuzmin V.A., Rubakov V.A., Shaposhnikov M.E., On anomalous electroweak baryon-number non-conservation in the early universe, 10.1016/0370-2693(85)91028-7
  81. D’Onofrio Michela, Rummukainen Kari, Tranberg Anders, Sphaleron Rate in the Minimal Standard Model, 10.1103/physrevlett.113.141602
  82. Weldon H. Arthur, Effective fermion masses of ordergTin high-temperature gauge theories with exact chiral invariance, 10.1103/physrevd.26.2789
  83. Greene Patrick B., Kofman Lev, Preheating of fermions, 10.1016/s0370-2693(99)00020-9
  84. Buchmüller W, Jakovác A, Classical statistical mechanics and Landau damping, 10.1016/s0370-2693(97)00746-6
  85. Parwani Rajesh R., Resummation in a hot scalar field theory, 10.1103/physrevd.45.4695
Bibliographic reference Drewes, Marco ; et. al. CMB constraints on the inflaton couplings and reheating temperature in $alpha$-attractor inflation. In: Journal of High Energy Physics, Vol. 11, no., p. 072
Permanent URL http://hdl.handle.net/2078.1/198941