User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization

  • Open access
  • PDF
  • 361.36 K
  1. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)
  2. Nesterov Yurii, Introductory Lectures on Convex Optimization, ISBN:9781461346913, 10.1007/978-1-4419-8853-9
  3. Ryu, E.K., Boyd, S.: A primer on monotone operator methods. Appl. Comput. Math. 15(1), 3–43 (2016)
  4. Lessard Laurent, Recht Benjamin, Packard Andrew, Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints, 10.1137/15m1009597
  5. Schmidt, M., Le Roux, N., Bach, F.: Convergence rates of inexact proximal-gradient methods for convex optimization. In: Advances in Neural Information Processing Systems, pp. 1458–1466 (2011)
  6. Zhang Hui, Cheng Lizhi, Restricted strong convexity and its applications to convergence analysis of gradient-type methods in convex optimization, 10.1007/s11590-014-0795-x
  7. Necoara I., Nesterov Yu., Glineur F., Linear convergence of first order methods for non-strongly convex optimization, 10.1007/s10107-018-1232-1
  8. Karimi Hamed, Nutini Julie, Schmidt Mark, Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition, Machine Learning and Knowledge Discovery in Databases (2016) ISBN:9783319461274 p.795-811, 10.1007/978-3-319-46128-1_50
  9. Drori Yoel, Teboulle Marc, Performance of first-order methods for smooth convex minimization: a novel approach, 10.1007/s10107-013-0653-0
  10. Taylor Adrien B., Hendrickx Julien M., Glineur François, Smooth strongly convex interpolation and exact worst-case performance of first-order methods, 10.1007/s10107-016-1009-3
  11. Taylor Adrien B., Hendrickx Julien M., Glineur François, Exact Worst-Case Performance of First-Order Methods for Composite Convex Optimization, 10.1137/16m108104x
  12. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)
  13. Combettes Patrick L., Pesquet Jean-Christophe, Proximal Splitting Methods in Signal Processing, Springer Optimization and Its Applications (2011) ISBN:9781441995681 p.185-212, 10.1007/978-1-4419-9569-8_10
  14. de Klerk Etienne, Glineur François, Taylor Adrien B., On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions, 10.1007/s11590-016-1087-4
  15. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
  16. Bubeck Sébastien, Convex Optimization: Algorithms and Complexity, 10.1561/2200000050
  17. Drori, Y.: Contributions to the Complexity Analysis of Optimization Algorithms. Ph.D. Thesis, Tel-Aviv University (2014)
  18. Nesterov Yu., Gradient methods for minimizing composite functions, 10.1007/s10107-012-0629-5
  19. Taylor, A.B.: Convex Interpolation and Performance Estimation of First-Order Methods for Convex Optimization. Ph.D. Thesis, Université catholique de Louvain (2017)
  20. Nemirovsky A.S, Information-based complexity of linear operator equations, 10.1016/0885-064x(92)90013-2
  21. Devolder Olivier, Glineur François, Nesterov Yurii, First-order methods of smooth convex optimization with inexact oracle, 10.1007/s10107-013-0677-5
  22. Nesterov Yu., Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems, 10.1137/100802001
  23. Kim Donghwan, Fessler Jeffrey A., Optimized first-order methods for smooth convex minimization, 10.1007/s10107-015-0949-3
  24. Drori Yoel, The exact information-based complexity of smooth convex minimization, 10.1016/j.jco.2016.11.001
  25. Taylor Adrien B., Hendrickx Julien M., Glineur Francois, Performance estimation toolbox (PESTO): Automated worst-case analysis of first-order optimization methods, 10.1109/cdc.2017.8263832
Bibliographic reference Taylor, Adrien B. ; Hendrickx, Julien ; Glineur, François. Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization. In: Journal of Optimization Theory and Applications, Vol. 178, p. 455-476 (2018)
Permanent URL http://hdl.handle.net/2078.1/198401