User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Edge statistics for a class of repulsive particle systems

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, For Sale by the Superintendent of Documents, vol. 55. U.S. Government Printing Office, Washington (1964)
  2. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)
  3. Akemann, G., Baik, J., Di Francesco, P. (eds.): The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)
  4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)
  5. Baik Jinho, Buckingham Robert, DiFranco Jeffery, Asymptotics of Tracy-Widom Distributions and the Total Integral of a Painlevé II Function, 10.1007/s00220-008-0433-5
  6. Baik Jinho, Deift Percy, McLaughlin Ken T. R., Miller Peter, Zhou Xin, Optimal tail estimates for directed last passage site percolation with geometric random variables, 10.4310/atmp.2001.v5.n6.a7
  7. Bekerman F., Figalli A., Guionnet A., Transport Maps for $${\beta}$$ β -Matrix Models and Universality, 10.1007/s00220-015-2384-y
  8. Borot Gaëtan, Eynard Bertrand, Orantin Nicolas, Abstract loop equations, topological recursion and new applications, 10.4310/cntp.2015.v9.n1.a2
  9. Borot Gaëtan, Guionnet Alice, Kozlowski Karol K., Large-NAsymptotic Expansion for Mean Field Models with Coulomb Gas Interaction, 10.1093/imrn/rnu260
  10. Bourgade Paul, Erdös László, Yau Horng-Tzer, Edge Universality of Beta Ensembles, 10.1007/s00220-014-2120-z
  11. de Monvel A. Boutet, Pastur L., Shcherbina M., On the statistical mechanics approach in the random matrix theory: Integrated density of states, 10.1007/bf02184872
  12. Chafaï Djalil, Gozlan Nathael, Zitt Pierre-André, First-order global asymptotics for confined particles with singular pair repulsion, 10.1214/13-aap980
  13. Chafaï Djalil, Péché Sandrine, A Note on the Second Order Universality at the Edge of Coulomb Gases on the Plane, 10.1007/s10955-014-1007-x
  14. Cramér, H.: Sur un nouveau théorème-limite de la théorie des probabilités. Actual. sci. industr (Confér. internat. Sci. math. Univ. Genève. Théorie des probabilités. III: Les sommes et les fonctions de variables aléatoires), vol. 736, pp. 5–23 (1938)
  15. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach, Courant Lecture Notes in Mathematics, vol. 3. American Mathematical Society, New York University, Courant Institute of Mathematical Sciences, New York (1999)
  16. Deift, P., Gioev, D.: Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics, vol. 18. American Mathematical Society, Courant Institute of Mathematical Sciences, New York (2009)
  17. Eichelsbacher Peter, , Kriecherbauer Thomas, Schüler Katharina, , , , , Precise Deviations Results for the Maxima of Some Determinantal Point Processes: the Upper Tail, 10.3842/sigma.2016.093
  18. Erdos, L.: Random matrices, log-gases and Hölder regularity. In: Proceedings of ICM 2014, Seoul, vol. III, pp. 213–236 (2015)
  19. Figalli, A., Guionnet, A.: Universality in several-matrix models via approximate transport maps. Acta Math. 217, 81 (2016). doi: 10.1007/s11511-016-0142-4
  20. Freud, G.: Orthogonale Polynome. Birkhäuser Verlag, Basel-Stuttgart (1969). Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 33
  21. Götze Friedrich, Venker Martin, Local universality of repulsive particle systems and random matrices, 10.1214/13-aop844
  22. Johansson Kurt, On fluctuations of eigenvalues of random Hermitian matrices, 10.1215/s0012-7094-98-09108-6
  23. Johansson Kurt, Shape Fluctuations and Random Matrices, 10.1007/s002200050027
  24. Kriecherbauer, T., Schubert, K., Schüler, K., Venker, M.: Global asymptotics for the Christoffel–Darboux kernel of random matrix theory. Markov Process. Relat. Fields 21(3, part 2), 639–694 (2015)
  25. Kriecherbauer, T., Shcherbina, M.: Fluctuations of eigenvalues of matrix models and their applications (2010). arXiv:1003.6121v1 [math-ph]
  26. Krishnapur Manjunath, Rider Brian, Virág Bálint, Universality of the Stochastic Airy Operator, 10.1002/cpa.21573
  27. Ledoux Michel, Rider Brian, Small Deviations for Beta Ensembles, 10.1214/ejp.v15-798
  28. Löwe Matthias, Merkl Franz, Moderate deviations for longest increasing subsequences: The upper tail : Moderate Deviations for Increasing Subsequences, 10.1002/cpa.10010
  29. Löwe Matthias, Merkl Franz, Rolles Silke, 10.1023/a:1020649006254
  30. Lukacs Eugene, Szász Otto, On analytic characteristic functions, 10.2140/pjm.1952.2.615
  31. Pastur Leonid, Shcherbina Mariya, Eigenvalue Distribution of Large Random Matrices, ISBN:9780821852859, 10.1090/surv/171
  32. Ramírez José A., Rider Brian, Virág Bálint, Beta ensembles, stochastic Airy spectrum, and a diffusion, 10.1090/s0894-0347-2011-00703-0
  33. Saff, E.B., Totik, V.: Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316. Springer, Berlin (1997) (Appendix B by Thomas Bloom)
  34. Schubert, K., Venker, M.: Empirical spacings of unfolded eigenvalues. Electron. J. Probab. 20, 37 (2015)
  35. Schüler, K.: Moderate, large and superlarge deviations for extremal eigenvalues of unitarily invariant ensembles. Ph.D. thesis, University of Bayreuth (2015)
  36. Shcherbina M., Orthogonal and Symplectic Matrix Models: Universality and Other Properties, 10.1007/s00220-011-1351-5
  37. Tao Terence, Vu Van, Random matrices: The universality phenomenon for Wigner ensembles, 10.1090/psapm/072/00615
  38. Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford (1939)
  39. Totik Vilmos, Asymptotics for Christoffel Functions with Varying Weights, 10.1006/aama.2000.0698
  40. Tracy Craig A., Widom Harold, Level-spacing distributions and the Airy kernel, 10.1007/bf02100489
  41. Tracy Craig A., Widom Harold, 10.1023/a:1023084324803
  42. Venker Martin, Particle systems with repulsion exponent $\beta$ and random matrices, 10.1214/ecp.v18-2864
Bibliographic reference Kriecherbauer, Thomas ; Venker, Martin. Edge statistics for a class of repulsive particle systems. In: Probability Theory and Related Fields, Vol. 170, no.3-4, p. 617-655 (2017)
Permanent URL http://hdl.handle.net/2078.1/197248