Kriecherbauer, Thomas
[University of Bayreuth]
Venker, Martin
[UCL]
We study a class of interacting particle systems on (Formula presented.) which was recently investigated by Götze and Venker (Ann Probab 42(6):2207–2242, 2014. doi:10.1214/13-AOP844). These ensembles generalize eigenvalue ensembles of Hermitian random matrices by allowing different interactions between particles. Although these ensembles are not known to be determinantal one can use the stochastic linearization method of Götze and Venker (Ann Probab 42(6):2207–2242, 2014. doi:10.1214/13-AOP844) to represent them as averages of determinantal ones. Our results describe the transition between universal behavior in the regime of the Tracy–Widom law and non-universal behavior for large deviations of the rightmost particle. Moreover, a detailed analysis of the transition that occurs in the regime of moderate deviations, is provided. We also compare our results with the corresponding ones obtained recently for determinantal ensembles (Eichelsbacher et al. in Symmetry Integr Geom Methods Appl 12:18, 2016. doi:10.3842/SIGMA.2016.093; Schüler in Moderate, large and superlarge deviations for extremal eigenvalues of unitarily invariant ensembles. Ph.D. thesis, University of Bayreuth, 2015). In particular, we discuss how the averaging effects the leading order behavior in the regime of large deviations. In the analysis of the averaging procedure we use detailed asymptotic information on the behavior of Christoffel–Darboux kernels that is uniform for perturbative families of weights. Such results have been provided by K. Schubert, K. Schüler and the authors in Kriecherbauer et al. (Markov Process Relat Fields 21(3, part 2):639–694, 2015).
- Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, For Sale by the Superintendent of Documents, vol. 55. U.S. Government Printing Office, Washington (1964)
- Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)
- Akemann, G., Baik, J., Di Francesco, P. (eds.): The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)
- Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)
- Baik Jinho, Buckingham Robert, DiFranco Jeffery, Asymptotics of Tracy-Widom Distributions and the Total Integral of a Painlevé II Function, 10.1007/s00220-008-0433-5
- Baik Jinho, Deift Percy, McLaughlin Ken T. R., Miller Peter, Zhou Xin, Optimal tail estimates for directed last passage site percolation with geometric random variables, 10.4310/atmp.2001.v5.n6.a7
- Bekerman F., Figalli A., Guionnet A., Transport Maps for $${\beta}$$ β -Matrix Models and Universality, 10.1007/s00220-015-2384-y
- Borot Gaëtan, Eynard Bertrand, Orantin Nicolas, Abstract loop equations, topological recursion and new applications, 10.4310/cntp.2015.v9.n1.a2
- Borot Gaëtan, Guionnet Alice, Kozlowski Karol K., Large-NAsymptotic Expansion for Mean Field Models with Coulomb Gas Interaction, 10.1093/imrn/rnu260
- Bourgade Paul, Erdös László, Yau Horng-Tzer, Edge Universality of Beta Ensembles, 10.1007/s00220-014-2120-z
- de Monvel A. Boutet, Pastur L., Shcherbina M., On the statistical mechanics approach in the random matrix theory: Integrated density of states, 10.1007/bf02184872
- Chafaï Djalil, Gozlan Nathael, Zitt Pierre-André, First-order global asymptotics for confined particles with singular pair repulsion, 10.1214/13-aap980
- Chafaï Djalil, Péché Sandrine, A Note on the Second Order Universality at the Edge of Coulomb Gases on the Plane, 10.1007/s10955-014-1007-x
- Cramér, H.: Sur un nouveau théorème-limite de la théorie des probabilités. Actual. sci. industr (Confér. internat. Sci. math. Univ. Genève. Théorie des probabilités. III: Les sommes et les fonctions de variables aléatoires), vol. 736, pp. 5–23 (1938)
- Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach, Courant Lecture Notes in Mathematics, vol. 3. American Mathematical Society, New York University, Courant Institute of Mathematical Sciences, New York (1999)
- Deift, P., Gioev, D.: Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics, vol. 18. American Mathematical Society, Courant Institute of Mathematical Sciences, New York (2009)
- Eichelsbacher Peter, , Kriecherbauer Thomas, Schüler Katharina, , , , , Precise Deviations Results for the Maxima of Some Determinantal Point Processes: the Upper Tail, 10.3842/sigma.2016.093
- Erdos, L.: Random matrices, log-gases and Hölder regularity. In: Proceedings of ICM 2014, Seoul, vol. III, pp. 213–236 (2015)
- Figalli, A., Guionnet, A.: Universality in several-matrix models via approximate transport maps. Acta Math. 217, 81 (2016). doi:
10.1007/s11511-016-0142-4
- Freud, G.: Orthogonale Polynome. Birkhäuser Verlag, Basel-Stuttgart (1969). Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 33
- Götze Friedrich, Venker Martin, Local universality of repulsive particle systems and random matrices, 10.1214/13-aop844
- Johansson Kurt, On fluctuations of eigenvalues of random Hermitian matrices, 10.1215/s0012-7094-98-09108-6
- Johansson Kurt, Shape Fluctuations and Random Matrices, 10.1007/s002200050027
- Kriecherbauer, T., Schubert, K., Schüler, K., Venker, M.: Global asymptotics for the Christoffel–Darboux kernel of random matrix theory. Markov Process. Relat. Fields 21(3, part 2), 639–694 (2015)
- Kriecherbauer, T., Shcherbina, M.: Fluctuations of eigenvalues of matrix models and their applications (2010).
arXiv:1003.6121v1
[math-ph]
- Krishnapur Manjunath, Rider Brian, Virág Bálint, Universality of the Stochastic Airy Operator, 10.1002/cpa.21573
- Ledoux Michel, Rider Brian, Small Deviations for Beta Ensembles, 10.1214/ejp.v15-798
- Löwe Matthias, Merkl Franz, Moderate deviations for longest increasing subsequences: The upper tail : Moderate Deviations for Increasing Subsequences, 10.1002/cpa.10010
- Löwe Matthias, Merkl Franz, Rolles Silke, 10.1023/a:1020649006254
- Lukacs Eugene, Szász Otto, On analytic characteristic functions, 10.2140/pjm.1952.2.615
- Pastur Leonid, Shcherbina Mariya, Eigenvalue Distribution of Large Random Matrices, ISBN:9780821852859, 10.1090/surv/171
- Ramírez José A., Rider Brian, Virág Bálint, Beta ensembles, stochastic Airy spectrum, and a diffusion, 10.1090/s0894-0347-2011-00703-0
- Saff, E.B., Totik, V.: Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316. Springer, Berlin (1997) (Appendix B by Thomas Bloom)
- Schubert, K., Venker, M.: Empirical spacings of unfolded eigenvalues. Electron. J. Probab. 20, 37 (2015)
- Schüler, K.: Moderate, large and superlarge deviations for extremal eigenvalues of unitarily invariant ensembles. Ph.D. thesis, University of Bayreuth (2015)
- Shcherbina M., Orthogonal and Symplectic Matrix Models: Universality and Other Properties, 10.1007/s00220-011-1351-5
- Tao Terence, Vu Van, Random matrices: The universality phenomenon for Wigner ensembles, 10.1090/psapm/072/00615
- Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford (1939)
- Totik Vilmos, Asymptotics for Christoffel Functions with Varying Weights, 10.1006/aama.2000.0698
- Tracy Craig A., Widom Harold, Level-spacing distributions and the Airy kernel, 10.1007/bf02100489
- Tracy Craig A., Widom Harold, 10.1023/a:1023084324803
- Venker Martin, Particle systems with repulsion exponent $\beta$ and random matrices, 10.1214/ecp.v18-2864
Bibliographic reference |
Kriecherbauer, Thomas ; Venker, Martin. Edge statistics for a class of repulsive particle systems. In: Probability Theory and Related Fields, Vol. 170, no.3-4, p. 617-655 (2017) |
Permanent URL |
http://hdl.handle.net/2078.1/197248 |