User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

A fully consistent and conservative vertically adaptive coordinate system for SLIM 3D v0.4 with an application to the thermocline oscillations of Lake Tanganyika

  • Open access
  • PDF
  • 1.36 M
  1. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, J. Computat. Phys., 198, 106–130, 2004.
  2. Akkermans, T., Thiery, W., and van Lipzig, N. P. M.: The regional climate impact of a realistic future deforestation scenario in the Congo Basin, J. Climate, 27, 2714–2734, 2014.
  3. Antenucci Jason P., Comment on “Are there internal Kelvin waves in Lake Tanganyika?” by Jaya Naithani and Eric Deleersnijder : COMMENTARY, 10.1029/2005gl024403
  4. Barnier, B., Siefridt, L., and Marchesiello, P.: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses, J. Marine Syst., 6, 363–380, 1995.
  5. Bassi, F. and Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138, 251–285, 1997.
  6. Bernard, P.-E., Chevaugeon, N., Legat, V., Deleersnijder, E., and Remacle, J.-F.: High-order h-adaptive discontinuous Galerkin methods for ocean modelling, Ocean Dynam., 57, 109–121, 2007.
  7. Berntsen, J. and Oey, L.-Y.: Estimation of the internal pressure gradient in σ-coordinate ocean models: comparison of second-, fourth-, and sixth-order schemes, Ocean Dynam., 60, 317–330, 2010.
  8. Berntsen, J., Thiem, Ø., and Avlesen, H.: Internal pressure gradient errors in σ-coordinate ocean models in high resolution fjord studies, Ocean Model., 92, 42–55, 2015.
  9. Blaise, S., Comblen, R., Legat, V., Remacle, J.-F., Deleersnijder, E., and Lambrechts, J.: A discontinuous finite element baroclinic marine model on unstructured prismatic meshes. Part I: space discretization, Ocean Dynam., 60, 1371–1393, 2010.
  10. Bleck, R. and Boudra, D.: Wind-driven spin-up in eddy-resolving ocean models formulated in isopycnic and isobaric coordinates, J. Geophys. Res., 91, 7611–7621, 1986.
  11. Blumberg Alan F., Mellor George L., A description of a three-dimensional coastal ocean circulation model, Three-Dimensional Coastal Ocean Models (1987) ISBN:0875902537 p.1-16, 10.1029/co004p0001
  12. Bryan, K.: A numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4, 347–376, 1969.
  13. Burchard, H. and Beckers, J.-M.: Non-uniform adaptive vertical grids in one-dimensional numerical ocean models, Ocean Model., 6, 51–81, 2004.
  14. Burchard, H., Bolding, K., and Villarreal, M. R.: GOTM, a general ocean turbulence model. Theory, implementation and test cases, Tech. Rep. EUR 18745, European Commission, 1999.
  15. Campin, J.-M., Adcroft, A., Hill, C., and Marshall, J.: Conservation of properties in a free-surface model, Ocean Model., 6, 221–244, 2004.
  16. Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (Eds.): The Development of Discontinuous Galerkin Methods, in: Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11, Springer, Berlin, Heidelberg, 2000.
  17. Comblen, R., Blaise, S., Legat, V., Remacle, J.-F., Deleersnijder, E., and Lambrechts, J.: A discontinuous finite element baroclinic marine model on unstructured prismatic meshes. Part II: implicit/explicit time discretization, Ocean Dynam., 60, 1395–1414, 2010.
  18. Coulter, G.-W. and Spigel, R.-H.: Hydrodynamics, in: Lake Tanganyika and its life, edited by: Coulter, G.-W., Oxford University Press, 49–75, 1991.
  19. Cushman-Roisin, B. and Beckers, J.-M.: Introduction to geophysical fluid dynamics: physical and numerical aspects, 2nd Edn., Academic Press, 101, 875 pp., 2011.
  20. Davin E. L., Seneviratne S. I., Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate, 10.5194/bg-9-1695-2012
  21. Delandmeter, P., Lewis, S. E., Lambrechts, J., Deleersnijder, E., Legat, V., and Wolanski, E.: The transport and fate of riverine fine sediment exported to a semi-open system, Estuar. Coast. Shelf S., 167, 336–346, 2015.
  22. Deleersnijder, E. and Beckers, J.-M.: On the use of the σ-coordinate system in regions of large bathymetric variations, J. Marine Syst., 3, 381–390, 1992.
  23. Deleersnijder, E. and Ruddick, K.: A generalized vertical coordinate for 3D marine models, Bulletin de la Société Royale des Sciences de Liège, 61, 489–502, 1992.
  24. Descy, J., Plisnier, P., Leporcq, B., et al.: Climate variability as recorded in Lake Tanganyika (Climlake), Final report, Belgian Science Policy, Brussels, available at (last access: 1 May 2017), 2006.
  25. Docquier, D., Thiery, W., Lhermitte, S., and van Lipzig, N. P. M.: Multi-year wind dynamics around Lake Tanganyika, Clim. Dynam., 47, 3191–3202, 2016.
  26. Eliassen, A.: The quasi-static equations of motion with pressure as independent variable, vol. 17, Grøndahl & Sons boktr., I kommisjon hos Cammermeyers boghandel, 1949.
  27. Formaggia, L. and Nobile, F.: Stability analysis of second-order time accurate schemes for ALE–FEM, Comput. Method. Appl. M., 193, 4097–4116, 2004.
  28. Freeman, N., Hale, A., and Danard, M.: A modified sigma equations' approach to the numerical modeling of Great Lakes hydrodynamics, J. Geophys. Res., 77, 1050–1060, 1972.
  29. Gerdes, R.: A primitive equation ocean circulation model using a general vertical coordinate transformation: 1. Description and testing of the model, J. Geophys. Res., 98, 14683–14701, 1993a.
  30. Gerdes, R.: A primitive equation ocean circulation model using a general vertical coordinate transformation: 2. Application to an overflow problem, J. Geophys. Res., 98, 14703–14726, 1993b.
  31. Gourgue, O., Deleersnijder, E., and White, L.: Toward a generic method for studying water renewal, with application to the epilimnion of Lake Tanganyika, Estuar. Coast. Shelf S., 74, 628–640, 2007.
  32. Gourgue, O., Deleersnijder, E., Legat, V., et al.: Free and forced thermocline oscillations in Lake Tanganyika, Factor separation in the atmosphere: applications and future prospects, edited by: Alpert, P. and Sholokhman, T., Cambridge University Press, Cambridge, UK, 146–162, 2011.
  33. Gräwe, U., Holtermann, P., Klingbeil, K., and Burchard, H.: Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas, Ocean Model., 92, 56–68, 2015.
  34. Griffies, S. M., Böning, C., Bryan, F. O., Chassignet, E. P., Gerdes, R., Hasumi, H., Hirst, A., Treguier, A.-M., and Webb, D.: Developments in ocean climate modelling, Ocean Model., 2, 123–192, 2000.
  35. Hanert, E., Deleersnijder, E., and Legat, V.: An adaptive finite element water column model using the Mellor–Yamada level 2.5 turbulence closure scheme, Ocean Model., 12, 205–223, 2006.
  36. Hanert, E., Deleersnijder, E., Blaise, S., and Remacle, J.-F.: Capturing the bottom boundary layer in finite element ocean models, Ocean Model., 17, 153–162, 2007.
  37. Haney, R. L.: On the pressure gradient force over steep topography in sigma coordinate ocean models, J. Phys. Oceanogr., 21, 610–619, 1991.
  38. Hill, J., Piggott, M., Ham, D. A., Popova, E., and Srokosz, M.: On the performance of a generic length scale turbulence model within an adaptive finite element ocean model, Ocean Model., 56, 1–15, 2012.
  39. Hodges, B. R., Imberger, J., Saggio, A., and Winters, K. B.: Modeling basin-scale internal waves in a stratified lake, Limnol. Oceanogr., 45, 1603–1620, 2000.
  40. Hofmeister, R., Burchard, H., and Beckers, J.-M.: Non-uniform adaptive vertical grids for 3D numerical ocean models, Ocean Model., 33, 70–86, 2010.
  41. Hofmeister, R., Beckers, J.-M., and Burchard, H.: Realistic modelling of the exceptional inflows into the central Baltic Sea in 2003 using terrain-following coordinates, Ocean Model., 39, 233–247, 2011.
  42. Huttula, T. (Ed.): Flow, thermal regime and sediment transport studies in Lake Tanganyika, Kuopio University Publications C. Natural and Environmental Sciences 73, 173 pp., 1997.
  43. Huttula, T., Peltonen, A., Podsetchine, V., Kotilainen, P., Kakogozo, B., Makasa, L., Muhoza, S., and Tumba, J.-M.: Chapter 2: Hydrodynamics and Hydrodynamic Modelling, FAO/FINNIDA Research for the Management of the Fisheries of Lake Tanganyika, gCP/RAF/271/FIN-TD/94 (En): 10–25, available at: ( (last access: 1 May 2017), 1999.
  44. Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G., and Griffies, S. M.: Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater, J. Atmos. Ocean. Tech., 23, 1709–1728, 2006.
  45. Jacobs, L., Dewitte, O., Poesen, J., Delvaux, D., Thiery, W., and Kervyn, M.: The Rwenzori Mountains, a landslide-prone region?, Landslides, 13, 519–536, 2016a.
  46. Jacobs, L., Maes, J., Mertens, K., Sekajugo, J., Thiery, W., van Lipzig, N. P. M., Poesen, J., Kervyn, M., and Dewitte, O.: Reconstruction of a flash flood event through a multi-hazard approach: focus on the Rwenzori Mountains, Uganda, Nat. Hazards, 84, 851–876, 2016b.
  47. Kamenkovich, I. V. and Sarachik, E.: Mechanisms controlling the sensitivity of the Atlantic thermohaline circulation to the parameterization of eddy transports in ocean GCMs, J. Phys. Oceanogr., 34, 1628–1647, 2004.
  48. Kärnä, T., Legat, V., Deleersnijder, E., and Burchard, H.: Coupling of a discontinuous Galerkin finite element marine model with a finite difference turbulence closure model, Ocean Model., 47, 55–64, 2012.
  49. Kärnä, T., Legat, V., and Deleersnijder, E.: A baroclinic discontinuous Galerkin finite element model for coastal flows, Ocean Model., 61, 1–20, 2013.
  50. Kasahara, A.: Various vertical coordinate systems used for numerical weather prediction, Mon. Weather Rev., 102, 509–522, 1974.
  51. Mellor, G. L., Ezer, T., and Oey, L.-Y.: The pressure gradient conundrum of sigma coordinate ocean models, J. Atmos. Ocean. Tech., 11, 1126–1134, 1994.
  52. Mellor, G. L., Oey, L.-Y., and Ezer, T.: Sigma coordinate pressure gradient errors and the seamount problem, J. Atmos. Ocean. Tech., 15, 1122–1131, 1998.
  53. Mortimer, C.-H.: Motion in thermoclines, Verh. Internat. Verein. Limnol., 14, 79–83, 1961.
  54. Naithani Jaya, Deleersnijder Eric, Are there internal Kelvin waves in Lake Tanganyika? : INTERNAL KELVIN WAVES IN LAKE TANGANYIKA, 10.1029/2003gl019156
  55. Naithani Jaya, Deleersnijder Eric, Plisnier Pierre-Denis, Origin of intraseasonal variability in Lake Tanganyika : ORIGIN OF INTRASEASONAL VARIABILITY IN LAKE TANGANYIKA, 10.1029/2002gl015843
  56. Naithani, J., Deleersnijder, E., and Plisnier, P.-D.: Analysis of wind-induced thermocline oscillations of Lake Tanganyika, Environ. Fluid Mech., 3, 23–39, 2003.
  57. Naithani, J., Plisnier, P.-D., and Deleersnijder, E.: A simple model of the eco-hydrodynamics of the epilimnion of Lake Tanganyika, Freshwater Biol., 52, 2087–2100, 2007.
  58. Nihoul, J. C., Waleffe, F., and Djenidi, S.: A 3D-numerical model of the Northern Bering Sea, Environ. Softw., 1, 76–81, 1986.
  59. Ogutu-Ohwayo, R., Hecky, R. E., Cohen, A. S., and Kaufman, L.: Human impacts on the African Great Lakes, Environ. Biol. Fish., 50, 117–131, 1997.
  60. Owen, A.: A three-dimensional model of the Bristol Channel, J. Phys. Oceanogr., 10, 1290–1302, 1980.
  61. Panitz, H.-J., Dosio, A., Büchner, M., Lüthi, D., and Keuler, K.: COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44 and 0.22 resolution, Clim. Dynam., 42, 3015–3038, 2014.
  62. Phillips, N. A.: A coordinate system having some special advantages for numerical forecasting, J. Meteorol., 14, 184–185, 1957.
  63. Piggott, M., Pain, C., Gorman, G., Power, P., and Goddard, A.: h, r, and hr adaptivity with applications in numerical ocean modelling, Ocean Model., 10, 95–113, 2005.
  64. Piggott, M., Gorman, G., Pain, C., Allison, P., Candy, A., Martin, B., and Wells, M.: A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes, Int. J. Numer. Meth. Fl., 56, 1003–1015, 2008.
  65. Podsetchine V., Huttula T., Savijärvi H., 10.1023/a:1003758003034
  66. Seny, B., Lambrechts, J., Comblen, R., Legat, V., and Remacle, J.-F.: Multirate time stepping for accelerating explicit discontinuous Galerkin computations with application to geophysical flows, Int. J. Numer. Meth. Fl., 71, 41–64, 2013.
  67. Seny, B., Lambrechts, J., Toulorge, T., Legat, V., and Remacle, J.-F.: An efficient parallel implementation of explicit multirate Runge–Kutta schemes for discontinuous Galerkin computations, J. Comput. Phys., 256, 135–160, 2014.
  68. Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 347–404, 2005.
  69. Smagorinsky, J.: General circulation experiments with the primitive equations: I. the basic experiment*, Mon. Weather Rev., 91, 99–164, 1963.
  70. Song, Y. and Haidvogel, D.: A semi-implicit ocean circulation model using a generalized topography-following coordinate system, J. Comput. Phys., 115, 228–244, 1994.
  71. Stelling, G. S. and Van Kester, J. A. T. M.: On the approximation of horizontal gradients in sigma co-ordinates for bathymetry with steep bottom slopes, Int. J. Numer. Meth. Fl., 18, 915–935, 1994.
  72. Sutcliffe, R.: A contribution to the problem of development, Q. J. Roy. Meteor. Soc., 73, 370–383, 1947.
  73. Thiem, Ø. and Berntsen, J.: Internal pressure errors in sigma-coordinate ocean models due to anisotropy, Ocean Model., 12, 140–156, 2006.
  74. Thiery WIM, Stepanenko Victor M., Fang Xing, Jöhnk Klaus D., Li Zhongshun, Martynov Andrey, Perroud Marjorie, Subin Zachary M., Darchambeau François, Mironov Dmitrii, Van Lipzig Nicole P. M., LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models, 10.3402/tellusa.v66.21390
  75. Thiery W., Martynov A., Darchambeau F., Descy J.-P., Plisnier P.-D., Sushama L., van Lipzig N. P. M., Understanding the performance of the FLake model over two African Great Lakes, 10.5194/gmd-7-317-2014
  76. Thiery, W., Davin, E. L., Panitz, H.-J., Demuzere, M., Lhermitte, S., and van Lipzig, N. P. M.: The impact of the African Great Lakes on the regional climate, J. Climate, 28, 4061–4085, 2015.
  77. Thiery Wim, Davin Edouard L., Seneviratne Sonia I., Bedka Kristopher, Lhermitte Stef, van Lipzig Nicole P. M., Hazardous thunderstorm intensification over Lake Victoria, 10.1038/ncomms12786
  78. Verburg, P., Antenucci, J. P., and Hecky, R. E.: Large scale overturning circulation against the direction of the wind in Lake Tanganyika, Verh. Internat. Verein. Limnol., 30, 612–622, 2008.
  79. Verburg, P., Antenucci, J. P., and Hecky, R. E.: Differential cooling drives large-scale convective circulation in Lake Tanganyika, Limnol. Oceanogr., 56, 910–926, 2011.
Bibliographic reference Delandmeter, Philippe ; Lambrechts, Jonathan ; Legat, Vincent ; Vallaeys, Valentin ; Naithani, Jaya ; et. al. A fully consistent and conservative vertically adaptive coordinate system for SLIM 3D v0.4 with an application to the thermocline oscillations of Lake Tanganyika. In: Geoscientific Model Development, Vol. 11, no.3, p. 1161-1179 (2018)
Permanent URL