Accès à distance ? S'identifier sur le proxy UCLouvain
Modularity-driven kernel k-means for community detection
Primary tabs
- Open access
- 334.94 K
Document type | Article de périodique (Journal article) – Article de recherche |
---|---|
Access type | Accès libre |
Publication date | 2017 |
Language | Anglais |
Journal information | "Lecture Notes in Computer Science - ICANN 2017 International Conference on Artificial Neural Networks" - Vol. 10614, p. 423-433 (2017) |
Peer reviewed | yes |
Publisher | Springer (Heidelberg) |
issn | 0302-9743 |
e-issn | 1611-3349 |
Publication status | Publié |
Affiliations |
UCL
- SSH/LouRIM - Louvain Research Institute in Management and Organizations UCL - SST/ICTM - Institute of Information and Communication Technologies, Electronics and Applied Mathematics UCL - SST/ICTM/INGI - Pôle en ingénierie informatique |
Keywords | Clustering ; Graph theory ; Modularity ; Kernel k-means ; Community detection |
Links |
- Berkhin P., A Survey of Clustering Data Mining Techniques, Grouping Multidimensional Data ISBN:354028348X p.25-71, 10.1007/3-540-28349-8_2
- Blondel Vincent D, Guillaume Jean-Loup, Lambiotte Renaud, Lefebvre Etienne, Fast unfolding of communities in large networks, 10.1088/1742-5468/2008/10/p10008
- Bolla Marianna, Penalized versions of the Newman-Girvan modularity and their relation to normalized cuts andk-means clustering, 10.1103/physreve.84.016108
- Borg Ingwer, Groenen Patrick, Modern Multidimensional Scaling, ISBN:9781475727135, 10.1007/978-1-4757-2711-1
- Brandes U., Delling D., Gaertler M., Gorke R., Hoefer M., Nikoloski Z., Wagner D., On Modularity Clustering, 10.1109/tkde.2007.190689
- Chebotarev Pavel, A class of graph-geodetic distances generalizing the shortest-path and the resistance distances, 10.1016/j.dam.2010.11.017
- Chebotarev Pavel, The graph bottleneck identity, 10.1016/j.aam.2010.11.001
- Chebotarev Pavel, The walk distances in graphs, 10.1016/j.dam.2012.02.015
- Chebotarev, P., Shamis, E.: The matrix-forest theorem and measuring relations in small social groups. Autom. Remote Control 58(9), 1505–1514 (1997)
- Chebotarev Pavel, Shamis Elena, The Forest Metrics for Graph Vertices, 10.1016/s1571-0653(04)00058-7
- Chung, F., Yau, S.T.: Coverings, heat kernels and spanning trees. J. Comb. 6, 163–184 (1998)
- Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.: Automated multi-modality image registration based on information theory. Inf. Process. Med. Imaging 3, 263–274 (1995)
- Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)
- Daniel, W.W.: Applied Non-parametric Statistics. The Duxbury Advanced Series in Statistics and Decision Sciences. PWS-Kent Publishing Company, Boston (1990)
- Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
- Devooght Robin, Mantrach Amin, Kivimäki Ilkka, Bersini Hugues, Jaimes Alejandro, Saerens Marco, Random walks based modularity : application to semi-supervised learning, 10.1145/2566486.2567986
- Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, Hoboken (1973)
- Estrada Ernesto, The communicability distance in graphs, 10.1016/j.laa.2012.01.017
- Fortunato S., Barthelemy M., Resolution limit in community detection, 10.1073/pnas.0605965104
- Fouss Francois, Saerens Marco, Shimbo Masashi, Algorithms and Models for Network Data and Link Analysis, ISBN:9781316418321, 10.1017/cbo9781316418321
- Fouss Francois, Yen Luh, Pirotte Alain, Saerens Marco, An Experimental Investigation of Graph Kernels on a Collaborative Recommendation Task, 10.1109/icdm.2006.18
- Françoisse Kevin, Kivimäki Ilkka, Mantrach Amin, Rossi Fabrice, Saerens Marco, A bag-of-paths framework for network data analysis, 10.1016/j.neunet.2017.03.010
- Girvan M., Newman M. E. J., Community structure in social and biological networks, 10.1073/pnas.122653799
- Hubert Lawrence, Arabie Phipps, Comparing partitions, 10.1007/bf01908075
- Ito Takahiko, Shimbo Masashi, Kudo Taku, Matsumoto Yuji, Application of kernels to link analysis, 10.1145/1081870.1081941
- Ivashkin, V., Chebotarev, P.: Do logarithmic proximity measures outperform plain ones in graph clustering? In: Proceedings of 6th International Conference on Network Analysis (2016)
- Kandola, J., Cristianini, N., Shawe-Taylor, J.: Learning semantic similarity. In: Advances in Neural Information Processing Systems (NIPS 2002), vol. 15, pp. 657–664 (2002)
- Katz Leo, A new status index derived from sociometric analysis, 10.1007/bf02289026
- Kivimäki Ilkka, Shimbo Masashi, Saerens Marco, Developments in the theory of randomized shortest paths with a comparison of graph node distances, 10.1016/j.physa.2013.09.016
- Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: Proceedings of the 19th International Conference on Machine Learning (ICML 2002), pp. 315–322 (2002)
- Krebs, V.: New political patterns (2008). http://www.orgnet.com/divided.html
- Lancichinetti Andrea, Fortunato Santo, Limits of modularity maximization in community detection, 10.1103/physreve.84.066122
- Lancichinetti Andrea, Fortunato Santo, Radicchi Filippo, Benchmark graphs for testing community detection algorithms, 10.1103/physreve.78.046110
- Lang, K.: 20 newsgroups dataset. http://bit.ly/lang-newsgroups
- Newman M. E. J., Finding community structure in networks using the eigenvectors of matrices, 10.1103/physreve.74.036104
- Newman M. E. J., Modularity and community structure in networks, 10.1073/pnas.0601602103
- Newman Mark, Networks, ISBN:9780199206650, 10.1093/acprof:oso/9780199206650.001.0001
- Newman M. E. J., Girvan M., Finding and evaluating community structure in networks, 10.1103/physreve.69.026113
- Reichardt Jörg, Bornholdt Stefan, Detecting Fuzzy Community Structures in Complex Networks with a Potts Model, 10.1103/physrevlett.93.218701
- Saerens Marco, Achbany Youssef, Fouss François, Yen Luh, Randomized Shortest-Path Problems: Two Related Models, 10.1162/neco.2009.11-07-643
- Siegel, S.: Non-parametric Statistics for the Behavioral Sciences. McGraw-Hill, New York city (1956)
- Smola Alexander J., Kondor Risi, Kernels and Regularization on Graphs, Learning Theory and Kernel Machines (2003) ISBN:9783540407201 p.144-158, 10.1007/978-3-540-45167-9_12
- Sommer Felix, Fouss François, Saerens Marco, Comparison of Graph Node Distances on Clustering Tasks, Artificial Neural Networks and Machine Learning – ICANN 2016 (2016) ISBN:9783319447773 p.192-201, 10.1007/978-3-319-44778-0_23
- von Luxburg, U., Radl, A., Hein, M.: Getting lost in space: large sample analysis of the commute distance. In: Proceedings of the 23th Neural Information Processing Systems conference (NIPS 2010), pp. 2622–2630 (2010)
- Xu R., WunschII D., Survey of Clustering Algorithms, 10.1109/tnn.2005.845141
- Yen Luh, Fouss Francois, Decaestecker Christine, Francq Pascal, Saerens Marco, Graph Nodes Clustering Based on the Commute-Time Kernel, Advances in Knowledge Discovery and Data Mining ISBN:9783540717003 p.1037-1045, 10.1007/978-3-540-71701-0_117
- Yen Luh, Fouss Francois, Decaestecker Christine, Francq Pascal, Saerens Marco, Graph nodes clustering with the sigmoid commute-time kernel: A comparative study, 10.1016/j.datak.2008.10.006
- Yen Luh, Saerens Marco, Mantrach Amin, Shimbo Masashi, A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances, 10.1145/1401890.1401984
- Zachary Wayne W., An Information Flow Model for Conflict and Fission in Small Groups, 10.1086/jar.33.4.3629752
Bibliographic reference | Sommer, Félix ; Fouss, François ; Saerens, Marco. Modularity-driven kernel k-means for community detection. In: Lecture Notes in Computer Science - ICANN 2017 International Conference on Artificial Neural Networks, Vol. 10614, p. 423-433 (2017) |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/196187 |