User menu

A relative monotone-light factorization system for internal groupoids

Bibliographic reference Gran, Marino ; Cigoli, Alan Stefano ; Everaert, Tomas. A relative monotone-light factorization system for internal groupoids. In: Applied Categorical Structures, Vol. ., p. . (2018)
Permanent URL
  1. Bourn, D.: The shift functor and the comprehensive factorization for internal groupoids. Cah. Topol. Géom. Différ. Catég. 28, 197–226 (1987)
  2. Bourn Dominique, The denormalized 3×3 lemma, 10.1016/s0022-4049(02)00143-3
  3. Brown, R.: Topology and groupoids, Third edition of Elements of modern topology, 1968. McGraw-Hill, BookSurge, New York (2006)
  4. Carboni A., Janelidze G., Kelly G. M., Paré R., 10.1023/a:1008620404444
  5. Cassidy C., Hébert M., Kelly G. M., Reflective subcategories, localizations and factorizationa systems, 10.1017/s1446788700023624
  6. Chikhladze Dimitri, Monotone-light factorization for Kan fibrations of simplicial sets with respect to groupoids, 10.4310/hha.2004.v6.n1.a24
  7. Cigoli, A.S.: A characterization of final functors between internal groupoids in exact categories. preprint arXiv:1711.10747
  8. Cigoli Alan S., Mantovani Sandra, Metere Giuseppe, A Push Forward Construction and the Comprehensive Factorization for Internal Crossed Modules, 10.1007/s10485-013-9348-1
  9. Gran Marino, Everaert Tomas, Monotone-light factorisation systems and torsion theories, 10.1016/j.bulsci.2013.02.004
  10. Gabriel Peter, Zisman Michel, Calculus of Fractions and Homotopy Theory, ISBN:9783642858468, 10.1007/978-3-642-85844-4
  11. Gran Marino, Internal categories in Mal’cev categories, 10.1016/s0022-4049(98)00112-1
  12. Gran Marino, Central extensions and internal groupoids in Maltsev categories, 10.1016/s0022-4049(99)00092-4
  13. Gran Marino, Rodelo Diana, A New Characterisation of Goursat Categories, 10.1007/s10485-010-9236-x
  14. Higgins, P.J.: Categories and Groupoids. Reprint on the original Notes on categories and groupoids [Van Nostrand Reinhold, London, 1971]. Repr. Theory Appl. Categ. 7, 1–195 (2005)
  15. Illusie Luc, Complexe Cotangent et Déformations II, ISBN:9783540059769, 10.1007/bfb0059573
  16. Dzhanelidze G Z, THE FUNDAMENTAL THEOREM OF GALOIS THEORY, 10.1070/sm1989v064n02abeh003313
  17. Janelidze George, Pure Galois theory in categories, 10.1016/0021-8693(90)90130-g
  18. Janelidze, G.: Internal crossed modules. Georgian Math. J. 10, 99–114 (2003)
  19. Janelidze G., Kelly G.M., Galois theory and a general notion of central extension, 10.1016/0022-4049(94)90057-4
  20. Janelidze, G., Sobral, M., Tholen, W.: Beyond Barr exactness: effective descent morphisms, In: M.C. Pedicchio, W. Tholen (Eds.), Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory, in: Encyclopedia of Math. Appl., vol. 97, Cambridge University Press, 2004, pp. 359–405
  21. Lack Stephen, The 3-by-3 lemma for regular Goursat categories, 10.4310/hha.2004.v6.n1.a1
  22. Le Creurer, I.: Descent of internal categories, Ph.D. thesis, Université catholique de Louvain: Louvain(1999)
  23. Street Ross, Walters R. F. C., The comprehensive factorization of a functor, 10.1090/s0002-9904-1973-13268-9
  24. Xarez, J.J.: Internal monotone-light factorization for categories via preorders. Theory Appl. Categ. 15, 235–251 (2004)