User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

The analytic structure and the transcendental weight of the BFKL ladder at NLL accuracy

  • Open access
  • PDF
  • 811.42 K
  1. Fadin V.S., Kuraev E.A., Lipatov L.N., On the pomeranchuk singularity in asymptotically free theories, 10.1016/0370-2693(75)90524-9
  2. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443 [ INSPIRE ].
  3. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [ INSPIRE ].
  4. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [ INSPIRE ].
  5. Fadin V.S., Lipatov L.N., BFKL pomeron in the next-to-leading approximation, 10.1016/s0370-2693(98)00473-0
  6. Ciafaloni Marcello, Camici Gianni, Energy scale(s) and next-to-leading BFKL equation, 10.1016/s0370-2693(98)00551-6
  7. Chirilli Giovanni A., Kovchegov Yuri V., Solution of the NLO BFKL equation and a strategy for solving the all-order BFKL equation, 10.1007/jhep06(2013)055
  8. Chirilli Giovanni A., Kovchegov Yuri V., γ * γ * cross section at NLO and properties of the BFKL evolution at higher orders, 10.1007/jhep05(2014)099
  9. Del Duca Vittorio, Dixon Lance J., Duhr Claude, Pennington Jeffrey, The BFKL equation, Mueller-Navelet jets and single-valued harmonic polylogarithms, 10.1007/jhep02(2014)086
  10. Brown Francis C.S., Polylogarithmes multiples uniformes en une variable, 10.1016/j.crma.2004.02.001
  11. O. Schnetz, Numbers and Functions in Quantum Field Theory, arXiv:1606.08598 [ INSPIRE ].
  12. Kotikov A.V., Lipatov L.N., NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories, 10.1016/s0550-3213(00)00329-1
  13. Kotikov A.V., Lipatov L.N., DGLAP and BFKL equations in the N=4 supersymmetric gauge theory, 10.1016/s0550-3213(03)00264-5
  14. Kotikov A.V., Lipatov L.N., Velizhanin V.N., Anomalous dimensions of Wilson operators in N=4 SYM theory, 10.1016/s0370-2693(03)00184-9
  15. Kotikov A.V., Lipatov L.N., Onishchenko A.I., Velizhanin V.N., Three-loop universal anomalous dimension of the Wilson operators in N=4 SUSY Yang–Mills model, 10.1016/j.physletb.2004.05.078
  16. Moch S., Vermaseren J.A.M., Vogt A., The three-loop splitting functions in QCD: the non-singlet case, 10.1016/j.nuclphysb.2004.03.030
  17. L.N. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys. JETP 63 (1986) 904 [Zh. Eksp. Teor. Fiz. 90 (1986) 1536] [ INSPIRE ].
  18. Dixon Lance J., Duhr Claude, Pennington Jeffrey, Single-valued harmonic polylogarithms and the multi-Regge limit, 10.1007/jhep10(2012)074
  19. REMIDDI E., VERMASEREN J. A. M., HARMONIC POLYLOGARITHMS, 10.1142/s0217751x00000367
  20. Goncharov A. B., Multiple polylogarithms, cyclotomy and modular complexes, 10.4310/mrl.1998.v5.n4.a7
  21. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [ INSPIRE ].
  22. F.C.S. Brown, Single-valued hyperlogarithms and unipotent differential equations, http://www.ihes.fr/∼brown/RHpaper5.pdf .
  23. F. Brown, Single-valued Motivic Periods and Multiple Zeta Values, SIGMA 2 (2014) e25 [ arXiv:1309.5309 ] [ INSPIRE ].
  24. F.C.S. Brown, Notes on motivic periods, arXiv:1512.06410 .
  25. Del Duca Vittorio, Druc Stefan, Drummond James, Duhr Claude, Dulat Falko, Marzucca Robin, Papathanasiou Georgios, Verbeek Bram, Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, 10.1007/jhep08(2016)152
  26. Arkani-Hamed N., Bourjaily J., Cachazo F., Trnka J., Local integrals for planar scattering amplitudes, 10.1007/jhep06(2012)125
  27. VERMASEREN J. A. M., HARMONIC SUMS, MELLIN TRANSFORMS AND INTEGRALS, 10.1142/s0217751x99001032
  28. Moch Sven, Uwer Peter, Weinzierl Stefan, Nested sums, expansion of transcendental functions, and multiscale multiloop integrals, 10.1063/1.1471366
  29. Weinzierl Stefan, Expansion around half-integer values, binomial sums, and inverse binomial sums, 10.1063/1.1758319
  30. Schnetz Oliver, Graphical functions and single-valued multiple polylogarithms, 10.4310/cntp.2014.v8.n4.a1
  31. A. Gadde, E. Pomoni and L. Rastelli, The Veneziano Limit of N = 2 Superconformal QCD: Towards the String Dual of N = 2 SU(N (c)) SYM with N (f ) = 2N (c), arXiv:0912.4918 [ INSPIRE ].
  32. Seiberg N., Electric-magnetic duality in supersymmetric non-Abelian gauge theories, 10.1016/0550-3213(94)00023-8
  33. Bern Zvi, Dixon Lance, Kosower David A., One-loop corrections to five-gluon amplitudes, 10.1103/physrevlett.70.2677
  34. Bern Z., Morgan A. G., Supersymmetry relations between contributions to one-loop gauge boson amplitudes, 10.1103/physrevd.49.6155
  35. Bern Zvi, Dixon Lance, Dunbar David C., Kosower David A., One-loop n-point gauge theory amplitudes, unitarity and collinear limits, 10.1016/0550-3213(94)90179-1
  36. L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [ INSPIRE ].
  37. Catani Stefano, Grazzini Massimiliano, The soft-gluon current at one-loop order, 10.1016/s0550-3213(00)00572-1
  38. Duhr Claude, Gehrmann Thomas, The two-loop soft current in dimensional regularization, 10.1016/j.physletb.2013.10.063
  39. Li Ye, Zhu Hua Xing, Single soft gluon emission at two loops, 10.1007/jhep11(2013)080
  40. Korchemsky G.P., Radyushkin A.V., Renormalization of the Wilson loops beyond the leading order, 10.1016/0550-3213(87)90277-x
  41. Grozin Andrey, Henn Johannes M., Korchemsky Gregory P., Marquard Peter, Three Loop Cusp Anomalous Dimension in QCD, 10.1103/physrevlett.114.062006
  42. Grozin Andrey G., Henn Johannes M., Korchemsky Gregory P., Marquard Peter, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, 10.1007/jhep01(2016)140
  43. Caswell William E., Asymptotic Behavior of Non-Abelian Gauge Theories to Two-Loop Order, 10.1103/physrevlett.33.244
  44. Jones D.R.T., Two-loop diagrams in Yang-Mills theory, 10.1016/0550-3213(74)90093-5
  45. Tarasov O.V., Vladimirov A.A., Zharkov A.Yu., The gell-mann-low function of QCD in the three-loop approximation, 10.1016/0370-2693(80)90358-5
  46. Larin S.A., Vermaseren J.A.M., The three-loop QCD β-function and anomalous dimensions, 10.1016/0370-2693(93)91441-o
  47. van Ritbergen T., Vermaseren J.A.M., Larin S.A., The four-loop β-function in quantum chromodynamics, 10.1016/s0370-2693(97)00370-5
  48. Czakon M., The four-loop QCD β-function and anomalous dimensions, 10.1016/j.nuclphysb.2005.01.012
  49. Herzog F., Ruijl B., Ueda T., Vermaseren J. A. M., Vogt A., The five-loop beta function of Yang-Mills theory with fermions, 10.1007/jhep02(2017)090
  50. Andree Roman, Young Donovan, Wilson loops in $ \mathcal{N} = 2 $ superconformal Yang-Mills theory, 10.1007/jhep09(2010)095
  51. Leoni Marta, Mauri Andrea, Santambrogio Alberto, Four-point amplitudes in N = 2 $$ \mathcal{N}=2 $$ SCQCD, 10.1007/jhep09(2014)017
  52. Leoni Marta, Mauri Andrea, Santambrogio Alberto, On the amplitude/Wilson loop duality in N=2 SCQCD, 10.1016/j.physletb.2015.06.013
  53. L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [ INSPIRE ].
  54. I.I. Balitsky, L.N. Lipatov and V.S. Fadin, Regge processes in nonabelian gauge theories (in Russian).
  55. Fadin V.S., Fiore R., Kozlov M.G., Reznichenko A.V., Proof of the multi-Regge form of QCD amplitudes with gluon exchanges in the NLA, 10.1016/j.physletb.2006.03.031
  56. Kozlov M. G., Reznichenko A. V., Fadin V. S., Check of the gluon-reggeization condition in the next-to-leading order: Quark part, 10.1134/s1063778811050152
  57. Kozlov M. G., Reznichenko A. V., Fadin V. S., Check of the gluon-reggeization condition in the next-to-leading order: Gluon part, 10.1134/s1063778812030106
  58. Kozlov M. G., Reznichenko A. V., Fadin V. S., Impact factor for gluon production in multi-Regge kinematics in the next-to-leading order, 10.1134/s1063778812040072
  59. V.S. Fadin, M.G. Kozlov and A.V. Reznichenko, Gluon Reggeization in Yang-Mills Theories, Phys. Rev. D 92 (2015) 085044 [ arXiv:1507.00823 ] [ INSPIRE ].
  60. Duca Vittorio Del, Glover E.W. Nigel, The high energy limit of QCD at two loops, 10.1088/1126-6708/2001/10/035
  61. V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, An infrared approach to Reggeization, Phys. Rev. D 85 (2012) 071104 [ arXiv:1108.5947 ] [ INSPIRE ].
  62. Del Duca Vittorio, Duhr Claude, Gardi Einan, Magnea Lorenzo, White Chris D., The infrared structure of gauge theory amplitudes in the high-energy limit, 10.1007/jhep12(2011)021
  63. Del Duca Vittorio, Falcioni Giulio, Magnea Lorenzo, Vernazza Leonardo, High-energy QCD amplitudes at two loops and beyond, 10.1016/j.physletb.2014.03.033
  64. Del Duca Vittorio, Falcioni Giulio, Magnea Lorenzo, Vernazza Leonardo, Analyzing high-energy factorization beyond next-to-leading logarithmic accuracy, 10.1007/jhep02(2015)029
  65. Henn J. M., Mistlberger B., Four-Gluon Scattering at Three Loops, Infrared Structure, and the Regge Limit, 10.1103/physrevlett.117.171601
  66. V.S. Fadin, Particularities of the NNLLA BFKL, AIP Conf. Proc. 1819 (2017) 060003 [ arXiv:1612.04481 ] [ INSPIRE ].
  67. Caron-Huot Simon, Gardi Einan, Vernazza Leonardo, Two-parton scattering in the high-energy limit, 10.1007/jhep06(2017)016
Bibliographic reference Del Duca, Vittorio ; Duhr, Claude ; Marzucca, Robin ; Verbeek, Bram. The analytic structure and the transcendental weight of the BFKL ladder at NLL accuracy. In: Journal of High Energy Physics, Vol. 2017, p. 1 (2017)
Permanent URL http://hdl.handle.net/2078.1/194473