User menu

Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case

Bibliographic reference Abreu, Samuel ; Britto, Ruth ; Duhr, Claude ; Gardi, Einan. Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case. In: Journal of High Energy Physics, Vol. 2017, p. 90 (2017)
Permanent URL
  1. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [ INSPIRE ].
  2. Goncharov A. B., Galois symmetries of fundamental groupoids and noncommutative geometry, 10.1215/s0012-7094-04-12822-2
  3. Brown Francis, The Massless Higher-Loop Two-Point Function, 10.1007/s00220-009-0740-5
  4. Anastasiou Charalampos, Duhr Claude, Dulat Falko, Mistlberger Bernhard, Soft triple-real radiation for Higgs production at N3LO, 10.1007/jhep07(2013)003
  5. Henn Johannes M., Multiloop Integrals in Dimensional Regularization Made Simple, 10.1103/physrevlett.110.251601
  6. Ablinger Jakob, Blümlein Johannes, Raab Clemens, Schneider Carsten, Wißbrock Fabian, Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms, 10.1016/j.nuclphysb.2014.04.007
  7. Bogner Christian, Brown Francis, Feynman integrals and iterated integrals on moduli spaces of curves of genus zero, 10.4310/cntp.2015.v9.n1.a3
  8. E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. Thesis, Humboldt University, Berlin, Inst. Math., 2015, [ arXiv:1506.07243 ] [ INSPIRE ].
  9. Bogner Christian, MPL—A program for computations with iterated integrals on moduli spaces of curves of genus zero, 10.1016/j.cpc.2016.02.033
  10. Goncharov A. B., Spradlin M., Vergu C., Volovich A., Classical Polylogarithms for Amplitudes and Wilson Loops, 10.1103/physrevlett.105.151605
  11. M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The master differential equations for the two loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [ hep-th/9805118 ] [ INSPIRE ].
  12. Adams Luise, Bogner Christian, Weinzierl Stefan, The two-loop sunrise graph with arbitrary masses, 10.1063/1.4804996
  13. Bloch Spencer, Vanhove Pierre, The elliptic dilogarithm for the sunset graph, 10.1016/j.jnt.2014.09.032
  14. Bloch Spencer, Kerr Matt, Vanhove Pierre, A Feynman integral via higher normal functions, 10.1112/s0010437x15007472
  15. Adams Luise, Bogner Christian, Weinzierl Stefan, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, 10.1063/1.4896563
  16. Adams Luise, Bogner Christian, Weinzierl Stefan, The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, 10.1063/1.4926985
  17. L. Adams, C. Bogner and S. Weinzierl, The iterated structure of the all-order result for the two-loop sunrise integral, J. Math. Phys. 57 (2016) 032304 [ arXiv:1512.05630 ] [ INSPIRE ].
  18. S. Bloch, M. Kerr and P. Vanhove, Local mirror symmetry and the sunset Feynman integral, arXiv:1601.08181 [ INSPIRE ].
  19. Adams Luise, Bogner Christian, Schweitzer Armin, Weinzierl Stefan, The kite integral to all orders in terms of elliptic polylogarithms, 10.1063/1.4969060
  20. Remiddi Ettore, Tancredi Lorenzo, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, 10.1016/j.nuclphysb.2016.04.013
  21. Primo Amedeo, Tancredi Lorenzo, On the maximal cut of Feynman integrals and the solution of their differential equations, 10.1016/j.nuclphysb.2016.12.021
  22. Primo Amedeo, Tancredi Lorenzo, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph, 10.1016/j.nuclphysb.2017.05.018
  23. F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [ INSPIRE ].
  24. Duhr Claude, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, 10.1007/jhep08(2012)043
  25. Connes Alain, Kreimer Dirk, Hopf Algebras, Renormalization and Noncommutative Geometry, 10.1007/s002200050499
  26. Connes Alain, Kreimer Dirk, Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem, 10.1007/s002200050779
  27. Kreimer Dirk, On the Hopf algebra structure of perturbative quantum field theories, 10.4310/atmp.1998.v2.n2.a4
  28. Kreimer Dirk, van Suijlekom Walter D., Recursive relations in the core Hopf algebra, 10.1016/j.nuclphysb.2009.04.025
  29. D. Kreimer, The core Hopf algebra, Clay Math. Proc. 11 (2010) 313 [ arXiv:0902.1223 ] [ INSPIRE ].
  30. Bloch Spencer, Esnault Hélène, Kreimer Dirk, On Motives Associated to Graph Polynomials, 10.1007/s00220-006-0040-2
  31. F. Brown, Notes on motivic periods, arXiv:1512.06410 .
  32. Panzer Erik, Schnetz Oliver, The Galois coaction on $\phi^4$ periods, 10.4310/cntp.2017.v11.n3.a3
  33. Brown Francis, Feynman amplitudes, coaction principle, and cosmic Galois group, 10.4310/cntp.2017.v11.n3.a1
  34. Abreu Samuel, Britto Ruth, Duhr Claude, Gardi Einan, From multiple unitarity cuts to the coproduct of Feynman integrals, 10.1007/jhep10(2014)125
  35. Abreu Samuel, Britto Ruth, Grönqvist Hanna, Cuts and coproducts of massive triangle diagrams, 10.1007/jhep07(2015)111
  36. S. Abreu, R. Britto, C. Duhr and E. Gardi, Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction, Phys. Rev. Lett. 119 (2017) 051601 [ arXiv:1703.05064 ] [ INSPIRE ].
  37. Landau L.D., On analytic properties of vertex parts in quantum field theory, 10.1016/0029-5582(59)90154-3
  38. Cutkosky R. E., Singularities and Discontinuities of Feynman Amplitudes, 10.1063/1.1703676
  39. R. Eden, P. Landshoff, D. Olive and J. Polkinghorne, The Analytic S-Matrix, Cambridge University Press, (1966).
  40. G. ’t Hooft and M. Veltman, Diagrammar, NATO Adv. Study Inst. Ser. B Phys. 4 (1974) 177.
  41. F. Pham, ed., Singularities of Integrals, Springer, (2005).
  42. D. Fotiadi and F. Pham, Analytic study of Some Feynman Graphs by Homological Methods, in Homology and Feynman integrals, R.C. Hwa and V.L. Teplitz, eds., W.A. Benjamin Inc., (1966).
  43. R.C. Hwa and V.L. Teplitz, Homology and Feynman Integrals, W.A. Benjamin, Inc., (1966).
  44. S. Bloch and D. Kreimer, Cutkosky Rules and Outer Space, arXiv:1512.01705 [ INSPIRE ].
  45. Abreu Samuel, Britto Ruth, Duhr Claude, Gardi Einan, Cuts from residues: the one-loop case, 10.1007/jhep06(2017)114
  46. Tkachov F.V., A theorem on analytical calculability of 4-loop renormalization group functions, 10.1016/0370-2693(81)90288-4
  47. Chetyrkin K.G., Tkachov F.V., Integration by parts: The algorithm to calculate β-functions in 4 loops, 10.1016/0550-3213(81)90199-1
  48. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [ hep-ph/0102033 ] [ INSPIRE ].
  49. Tarasov O. V., Connection between Feynman integrals having different values of the space-time dimension, 10.1103/physrevd.54.6479
  50. Bern Zvi, Dixon Lance, Kosower David A., Dimensionally regulated one-loop integrals, 10.1016/0370-2693(93)90400-c
  51. R.N. Lee, Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [ arXiv:0911.0252 ] [ INSPIRE ].
  52. Ellis R. Keith, Zanderighi Giulia, Scalar one-loop integrals for QCD, 10.1088/1126-6708/2008/02/002
  53. Dixon Lance J., Drummond James M., Henn Johannes M., The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep06(2011)100
  54. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., The massless hexagon integral in D=6 dimensions, 10.1016/j.physletb.2011.07.079
  55. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., The one-loop one-mass hexagon integral in D = 6 dimensions, 10.1007/jhep07(2011)064
  56. Del Duca Vittorio, Dixon Lance J., Drummond James M., Duhr Claude, Henn Johannes M., Smirnov Vladimir A., The one-loop six-dimensional hexagon integral with three massive corners, 10.1103/physrevd.84.045017
  57. Papadopoulos Costas G., Simplified differential equations approach for Master Integrals, 10.1007/jhep07(2014)088
  58. M. Spradlin and A. Volovich, Symbols of One-Loop Integrals From Mixed Tate Motives, JHEP 11 (2011) 084 [ arXiv:1105.2024 ] [ INSPIRE ].
  59. Kozlov Mikhail G., Lee Roman N., One-loop pentagon integral in d dimensions from differential equations in ϵ-form, 10.1007/jhep02(2016)021
  60. Fairlie D. B., Landshoff P. V., Nuttall J., Polkinghorne J. C., Singularities of the Second Type, 10.1063/1.1724262
  61. Fairlie D.B., Landshoff P.V., Nuttall J., Polkinghorne J.C., Physical sheet properties of second type singularities, 10.1016/0031-9163(62)90200-7
  62. Anastasiou Charalampos, Melnikov Kirill, Higgs boson production at hadron colliders in NNLO QCD, 10.1016/s0550-3213(02)00837-4
  63. Anastasiou Charalampos, Dixon Lance, Melnikov Kirill, Petriello Frank, Dilepton Rapidity Distribution in the Drell-Yan Process at Next-to-Next-to-Leading Order in QCD, 10.1103/physrevlett.91.182002
  64. Anastasiou Charalampos, Melnikov Kirill, Pseudoscalar Higgs boson production at hadron colliders in next-to-next-to-leading order QCD, 10.1103/physrevd.67.037501
  65. Anastasiou Charalampos, Dixon Lance, Melnikov Kirill, NLO Higgs boson rapidity distributions at hadron colliders, 10.1016/s0920-5632(03)80168-8
  66. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [ hep-ph/0312266 ] [ INSPIRE ].
  67. Frellesvig Hjalte, Papadopoulos Costas G., Cuts of Feynman Integrals in Baikov representation, 10.1007/jhep04(2017)083
  68. Zeng Mao, Differential equations on unitarity cut surfaces, 10.1007/jhep06(2017)121
  69. Bosma Jorrit, Sogaard Mads, Zhang Yang, Maximal cuts in arbitrary dimension, 10.1007/jhep08(2017)051
  70. M. Veltman, Diagrammatica: The path to Feynman rules, Cambridge Lect. Notes Phys. 4 (1994) 1.
  71. Arkani-Hamed N., Bourjaily J., Cachazo F., Trnka J., Local integrals for planar scattering amplitudes, 10.1007/jhep06(2012)125
  72. Kotikov A.V., Differential equations method. New technique for massive Feynman diagram calculation, 10.1016/0370-2693(91)90413-k
  73. A.V. Kotikov, Differential equation method: The calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. B 295 (1992) 409] [ INSPIRE ].
  74. Kotikov A.V., Differential equations method: the calculation of vertex-type Feynman diagrams, 10.1016/0370-2693(91)90834-d
  75. Gehrmann T., Remiddi E., Differential equations for two-loop four-point functions, 10.1016/s0550-3213(00)00223-6
  76. J.A. Lappo-Danilevsky, Théorie algorithmique des corps de Riemann, Rec. Math. Moscou 34 (1927) 113.
  77. Goncharov A. B., Multiple polylogarithms, cyclotomy and modular complexes, 10.4310/mrl.1998.v5.n4.a7
  78. Birthwright T.G, Glover E.W.N, Marquard P, Master Integrals For Massless Two-Loop Vertex Diagrams With Three Offshell Legs, 10.1088/1126-6708/2004/09/042
  79. Chavez Federico, Duhr Claude, Three-mass triangle integrals and single-valued polylogarithms, 10.1007/jhep11(2012)114
  80. Gaiotto Davide, Maldacena Juan, Sever Amit, Vieira Pedro, Pulling the straps of polygons, 10.1007/jhep12(2011)011
  81. G.F. Sterman, Partons, factorization and resummation, TASI 95, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, U.S.A., June 4-30, 1995, hep-ph/9606312 [ INSPIRE ].
  82. Drummond James M, Henn Johannes, Smirnov Vladimir A, Sokatchev Emery, Magic identities for conformal four-point integrals, 10.1088/1126-6708/2007/01/064
  83. Henn Johannes M., Naculich Stephen G., Schnitzer Howard J., Spradlin Marcus, More loops and legs in Higgs-regulated $$ \mathcal{N} = 4 $$ SYM amplitudes, 10.1007/jhep08(2010)002
  84. J.M. Henn, Dual conformal symmetry at loop level: massive regularization, J. Phys. A 44 (2011) 454011 [ arXiv:1103.1016 ] [ INSPIRE ].
  85. Caron-Huot Simon, Henn Johannes M., Iterative structure of finite loop integrals, 10.1007/jhep06(2014)114
  86. Broadhurst D.J., Summation of an infinite series of ladder diagrams, 10.1016/0370-2693(93)90202-s
  87. A. Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, alg-geom/9601021 .
  88. D. Fotiadi, M. Froissart, J. Lascoux and F. Pham, Analytic Properties of Some Integrals over Complex Manifolds, Centre de physique théorique — Ecole polytechnique, Paris France, (1964).
  89. D. Fotiadi, M. Froissart, J. Lascoux and F. Pham, Applications of an isotopoy theorem, vol. 4, Pergamon Press, (1965), pp. 159-191.
  90. Drummond James, Duhr Claude, Eden Burkhard, Heslop Paul, Pennington Jeffrey, Smirnov Vladimir A., Leading singularities and off-shell conformal integrals, 10.1007/jhep08(2013)133
  91. Drummond J. M., Generalised ladders and single-valued polylogs, 10.1007/jhep02(2013)092
  92. Dixon Lance J., Drummond James M., von Hippel Matt, Pennington Jeffrey, Hexagon functions and the three-loop remainder function, 10.1007/jhep12(2013)049
  93. Dixon Lance J., Drummond James M., Duhr Claude, Pennington Jeffrey, The four-loop remainder function and multi-Regge behavior at NNLLA in planar $ \mathcal{N} $ = 4 super-Yang-Mills theory, 10.1007/jhep06(2014)116
  94. Dixon Lance J., Duhr Claude, Pennington Jeffrey, Single-valued harmonic polylogarithms and the multi-Regge limit, 10.1007/jhep10(2012)074
  95. Dennen Tristan, Spradlin Marcus, Volovich Anastasia, Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory, 10.1007/jhep03(2016)069
  96. Chen Kuo-Tsai, Iterated path integrals, 10.1090/s0002-9904-1977-14320-6
  97. A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [ INSPIRE ].
  98. Brown Francis C. S., Multiple zeta values and periods of moduli spaces $\overline{\mathfrak{M}}_{0,n}$, 10.24033/asens.2099
  99. Duhr Claude, Gangl Herbert, Rhodes John R., From polygons and symbols to polylogarithmic functions, 10.1007/jhep10(2012)075
  100. Brandhuber Andreas, Spence Bill, Travaglini Gabriele, From trees to loops and back, 10.1088/1126-6708/2006/01/142
  101. Bern Zvi, Dixon Lance, Kosower David A., Dimensionally-regulated pentagon integrals, 10.1016/0550-3213(94)90398-0
  102. Joni S. A., Rota G.-C., Coalgebras and Bialgebras in Combinatorics, 10.1002/sapm197961293
  103. Schmitt William R., Incidence Hopf algebras, 10.1016/0022-4049(94)90105-8
  104. Schmitt William R, Antipodes and incidence coalgebras, 10.1016/0097-3165(87)90006-9
  105. Simmons-Duffin David, Projectors, shadows, and conformal blocks, 10.1007/jhep04(2014)146