User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

Bayesian model selection for the glacial-interglacial cycle

  • Open access
  • PDF
  • 573.83 K
  1. Abe-Ouchi Ayako, Saito Fuyuki, Kawamura Kenji, Raymo Maureen E., Okuno Jun’ichi, Takahashi Kunio, Blatter Heinz, Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, 10.1038/nature12374
  2. Ando Tomohiro, Tsay Ruey, Predictive likelihood for Bayesian model selection and averaging, 10.1016/j.ijforecast.2009.08.001
  3. Andrieu Christophe, Doucet Arnaud, Holenstein Roman, Particle Markov chain Monte Carlo methods : Particle Markov Chain Monte Carlo Methods, 10.1111/j.1467-9868.2009.00736.x
  4. Andrieu Christophe, Roberts Gareth O., The pseudo-marginal approach for efficient Monte Carlo computations, 10.1214/07-aos574
  5. Ashkenazy Yosef, Tziperman Eli, Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing?, 10.1016/j.quascirev.2004.04.008
  6. Berger AndréL., Long-Term Variations of Daily Insolation and Quaternary Climatic Changes, 10.1175/1520-0469(1978)035<2362:ltvodi>;2
  7. Berger, J. Phys., 121, 1 (2004)
  8. Brovkin V., Ganopolski A., Archer D., Munhoven G., Glacial CO2 cycle as a succession of key physical and biogeochemical processes, 10.5194/cp-8-251-2012
  9. Carson , J. 2015 Uncertainty quantification in palaeoclimate reconstruction PhD Thesis
  10. Chopin N., Jacob P. E., Papaspiliopoulos O., SMC2: an efficient algorithm for sequential analysis of state space models : Sequential Analysis of State Space Models, 10.1111/j.1467-9868.2012.01046.x
  11. Crucifix Michel, How can a glacial inception be predicted?, 10.1177/0959683610394883
  12. Crucifix M., Oscillators and relaxation phenomena in Pleistocene climate theory, 10.1098/rsta.2011.0315
  13. Crucifix M., Why could ice ages be unpredictable?, 10.5194/cp-9-2253-2013
  14. Del Moral Pierre, Feynman-Kac Formulae, ISBN:9781441919021, 10.1007/978-1-4684-9393-1
  15. Del Moral Pierre, Doucet Arnaud, Jasra Ajay, Sequential Monte Carlo samplers, 10.1111/j.1467-9868.2006.00553.x
  16. Douc, Proc. 4th Int. Symp. Image and Signal Processing and Analysis, 64 (2005)
  17. Doucet, The Handbook of Nonlinear Filtering, 656 (2009)
  18. Eaton, Multivariate Statistics: a Vector Space Approach (1983)
  19. Elderfield H., Ferretti P., Greaves M., Crowhurst S., McCave I. N., Hodell D., Piotrowski A. M., Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition, 10.1126/science.1221294
  20. Emiliani Cesare, Pleistocene Temperatures, 10.1086/626295
  21. Feng Fabo, Bailer-Jones C.A.L., Obliquity and precession as pacemakers of Pleistocene deglaciations, 10.1016/j.quascirev.2015.05.006
  22. Gelman Andrew, Hwang Jessica, Vehtari Aki, Understanding predictive information criteria for Bayesian models, 10.1007/s11222-013-9416-2
  23. Golightly A., Wilkinson D.J., Bayesian inference for nonlinear multivariate diffusion models observed with error, 10.1016/j.csda.2007.05.019
  24. Gordon, IEEE Proc., 140, 107 (1993)
  25. Huybers Peter, Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression, 10.1016/j.quascirev.2006.07.013
  26. Huybers Peter, Combined obliquity and precession pacing of late Pleistocene deglaciations, 10.1038/nature10626
  27. Huybers Peter, Wunsch Carl, Obliquity pacing of the late Pleistocene glacial terminations, 10.1038/nature03401
  28. Imbrie, Milankovitch and Climate, 269 (1984)
  29. Imbrie J., Imbrie J. Z., Modeling the Climatic Response to Orbital Variations, 10.1126/science.207.4434.943
  30. Imbrie John Z., Imbrie-Moore Annabel, Lisiecki Lorraine E., A phase-space model for Pleistocene ice volume, 10.1016/j.epsl.2011.04.018
  31. Jeffreys, The Theory of Probability (1939)
  32. Kass Robert E., Raftery Adrian E., Bayes Factors, 10.1080/01621459.1995.10476572
  33. Kwasniok F., Analysis and modelling of glacial climate transitions using simple dynamical systems, 10.1098/rsta.2011.0472
  34. Laskar J., Robutel P., Joutel F., Gastineau M., Correia A. C. M., Levrard B., A long-term numerical solution for the insolation quantities of the Earth , 10.1051/0004-6361:20041335
  35. Lisiecki Lorraine E., Links between eccentricity forcing and the 100,000-year glacial cycle, 10.1038/ngeo828
  36. Lisiecki, Paleoceanography, 20 (2005)
  37. Liu Jun S., Chen Rong, Sequential Monte Carlo Methods for Dynamic Systems, 10.1080/01621459.1998.10473765
  38. Milankovitch, Kanon der Erdbestrahlung und Seine Anwendung auf das Eiszeitenproblem (Canon of Insolation and the Ice-age Problem) (1941)
  39. Milankovitch, Canon of Insolation and the Ice-age Problem (1998)
  40. Mitsui Takahito, Aihara Kazuyuki, Dynamics between order and chaos in conceptual models of glacial cycles, 10.1007/s00382-013-1793-x
  41. Mitsui Takahito, Crucifix Michel, Effects of Additive Noise on the Stability of Glacial Cycles, Mathematical Paradigms of Climate Science (2016) ISBN:9783319390918 p.93-113, 10.1007/978-3-319-39092-5_6
  42. Paillard Didier, The timing of Pleistocene glaciations from a simple multiple-state climate model, 10.1038/34891
  43. Parrenin F., Paillard D., Terminations VI and VIII (∼ 530 and ∼ 720 kyr BP) tell us the importance of obliquity and precession in the triggering of deglaciations, 10.5194/cp-8-2031-2012
  44. Raymo M. E., The timing of major climate terminations, 10.1029/97pa01169
  45. Roe Gerard H., Allen Myles R., A comparison of competing explanations for the 100,000-yr Ice Age cycle, 10.1029/1999gl900509
  46. Ruddiman W. F., Ice-driven CO2 feedback on ice volume, 10.5194/cp-2-43-2006
  47. Saltzman Barry, Modelling the Slow Climate Attractor, Physically-Based Modelling and Simulation of Climate and Climatic Change (1988) ISBN:9789401078689 p.737-754, 10.1007/978-94-009-3043-8_3
  48. Saltzman Barry, Maasch Kirk A., A first-order global model of late Cenozoic climatic change, 10.1017/s0263593300020824
  49. Saltzman Barry, Maasch Kirk A, A first-order global model of late Cenozoic climatic change II. Further analysis based on a simplification of CO2 dynamics, 10.1007/bf00210005
  50. SHACKLETON NICHOLAS, Oxygen Isotope Analyses and Pleistocene Temperatures Re-assessed, 10.1038/215015a0
  51. Shackleton N. J., Backman J., Zimmerman H., Kent D. V., Hall M. A., Roberts D. G., Schnitker D., Baldauf J. G., Desprairies A., Homrighausen R., Huddlestun P., Keene J. B., Kaltenback A. J., Krumsiek K. A. O., Morton A. C., Murray J. W., Westberg-Smith J., Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region, 10.1038/307620a0
  52. Shackleton N. J., Berger A., Peltier W. R., An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677, 10.1017/s0263593300020782
  53. Tziperman Eli, Raymo Maureen E., Huybers Peter, Wunsch Carl, Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing : HOW TO PACE AN ICE AGE, 10.1029/2005pa001241
  54. Vehtari Aki, Ojanen Janne, A survey of Bayesian predictive methods for model assessment, selection and comparison, 10.1214/12-ss102
  55. Wan, Proc. Adaptive Systems for Signal Processing, Communications, and Control Symp, 153 (2000)
Bibliographic reference Carson, Jake ; Crucifix, Michel ; Preston, Simon ; Wilkinson, Richard D.. Bayesian model selection for the glacial-interglacial cycle. In: Journal of the Royal Statistical Society: Series C (Applied Statistics), Vol. 67, p. 25-54 (2017)
Permanent URL