User menu

The Cell Cycle is a Limit Cycle

Bibliographic reference Gérard, Claude ; Goldbeter, Albert. The Cell Cycle is a Limit Cycle. In: Mathematical Modelling of Natural Phenomena, Vol. 7, p. 126-166 (2012)
Permanent URL
  1. Murray Andrew W., Kirschner Marc W., Cyclin synthesis drives the early embryonic cell cycle, 10.1038/339275a0
  2. A. Murray, T. Hunt.The Cell Cycle : An Introduction. W.H. Freeman and Company (1993), New York.
  3. Félix Marie-Anne, Labbé Jean-Claude, Dorée Marcel, Hunt Tim, Karsenti Eric, Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase, 10.1038/346379a0
  4. Tyson J. J., Modeling the cell division cycle: cdc2 and cyclin interactions., 10.1073/pnas.88.16.7328
  5. Goldbeter A., A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase., 10.1073/pnas.88.20.9107
  6. Novak, J. Cell. Sci., 106, 1153 (1993)
  7. Ferrell Jr. J. E., The Biochemical Basis of an All-or-None Cell Fate Switch in Xenopus Oocytes, 10.1126/science.280.5365.895
  8. Pomerening Joseph R., Sontag Eduardo D., Ferrell James E., Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2, 10.1038/ncb954
  9. Sha W., Moore J., Chen K., Lassaletta A. D., Yi C.-S., Tyson J. J., Sible J. C., Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts, 10.1073/pnas.0235349100
  10. Novak B., Tyson J. J., Modeling the control of DNA replication in fission yeast, 10.1073/pnas.94.17.9147
  11. Chen K. C., Integrative Analysis of Cell Cycle Control in Budding Yeast, 10.1091/mbc.e03-11-0794
  12. Barik Debashis, Baumann William T, Paul Mark R, Novak Bela, Tyson John J, A model of yeast cell-cycle regulation based on multisite phosphorylation, 10.1038/msb.2010.55
  13. Morgan David O., Principles of CDK regulation, 10.1038/374131a0
  14. D.O. Morgan.The Cell Cycle : Principles of Control. Oxford Univ Press, UK, (2006).
  15. Qu Zhilin, Weiss James N., MacLellan W. Robb, Regulation of the mammalian cell cycle: a model of the G1-to-S transition, 10.1152/ajpcell.00066.2002
  16. Swat M., Kel A., Herzel H., Bifurcation analysis of the regulatory modules of the mammalian G1/S transition, 10.1093/bioinformatics/bth110
  17. Pfeuty Benjamin, David-Pfeuty Thérèse, Kaneko Kunihiko, Underlying principles of cell fate determination during G1 phase of the mammalian cell cycle, 10.4161/cc.7.20.6853
  18. Novák Béla, Tyson John J., A model for restriction point control of the mammalian cell cycle, 10.1016/j.jtbi.2004.04.039
  19. He E., Kapuy O., Oliveira R. A., Uhlmann F., Tyson J. J., Novak B., System-level feedbacks make the anaphase switch irreversible, 10.1073/pnas.1102106108
  20. Gerard C., Goldbeter A., Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle, 10.1073/pnas.0903827106
  21. Gerard C., Goldbeter A., A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle, 10.1098/rsfs.2010.0008
  22. Gérard Claude, Gonze Didier, Goldbeter Albert, Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle : Effect of positive feedback on the robustness of Cdk oscillations, 10.1111/j.1742-4658.2012.08585.x
  23. Chauhan Anuradha, Lorenzen Stephan, Herzel Hanspeter, Bernard Samuel, Regulation of mammalian cell cycle progression in the regenerating liver, 10.1016/j.jtbi.2011.05.026
  24. Gérard Claude, Goldbeter Albert, Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms, 10.1371/journal.pcbi.1002516
  25. Filipski E., Host Circadian Clock as a Control Point in Tumor Progression, 10.1093/jnci/94.9.690
  26. Fu, Nature, 3, 350 (2003)
  27. Pendergast Julie S., Yeom Mijung, Reyes Bryan A., Ohmiya Yoshihiro, Yamazaki Shin, Disconnected circadian and cell cycles in a tumor-driven cell line, 10.4161/cib.3.6.12841
  28. Segel Lee A., On the validity of the steady state assumption of enzyme kinetics, 10.1007/bf02460092
  29. Borghans José A. M., de Boer Rob J., Segel Lee A., Extending the quasi-steady state approximation by changing variables, 10.1007/bf02458281
  30. Ciliberto Andrea, Capuani Fabrizio, Tyson John J., Modeling Networks of Coupled Enzymatic Reactions Using the Total Quasi-Steady State Approximation, 10.1371/journal.pcbi.0030045
  31. Zachariae W., Nasmyth K., Whose end is destruction: cell division and the anaphase-promoting complex, 10.1101/gad.13.16.2039
  32. Kramer E. R., Scheuringer N., Podtelejnikov A. V., Mann M., Peters J.-M., Mitotic Regulation of the APC Activator Proteins CDC20 and CDH1, 10.1091/mbc.11.5.1555
  33. Hoffmann, EMBO J., 12, 53 (1993)
  34. Sabouri-Ghomi Mohsen, Ciliberto Andrea, Kar Sandip, Novak Bela, Tyson John J., Antagonism and bistability in protein interaction networks, 10.1016/j.jtbi.2007.09.001
  35. Goldbeter A., Koshland D. E., An amplified sensitivity arising from covalent modification in biological systems., 10.1073/pnas.78.11.6840
  36. Matsushime H, Quelle D E, Shurtleff S A, Shibuya M, Sherr C J, Kato J Y, D-type cyclin-dependent kinase activity in mammalian cells., 10.1128/mcb.14.3.2066
  37. Goldbeter Albert, Gérard Claude, Leloup Jean-Christophe, Biologie des systèmes et rythmes cellulaires, 10.1051/medsci/201026149
  38. Goldbeter A., Gérard C., Gonze D., Leloup J.-C., Dupont G., Systems biology of cellular rhythms, 10.1016/j.febslet.2012.07.041
  39. Gérard Claude, Goldbeter Albert, From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits, 10.1063/1.3527998
  40. Mittnacht Sibylle, Control of pRB phosphorylation, 10.1016/s0959-437x(98)80057-9
  41. Harbour J. W., The Rb/E2F pathway: expanding roles and emerging paradigms, 10.1101/gad.813200
  42. Dannenberg J.-H., Ablation of the Retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions, 10.1101/gad.847700
  43. Sage J., Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization, 10.1101/gad.843200
  44. Pomerening Joseph R., Kim Sun Young, Ferrell James E., Systems-Level Dissection of the Cell-Cycle Oscillator: Bypassing Positive Feedback Produces Damped Oscillations, 10.1016/j.cell.2005.06.016
  45. D. Gonze, M. Hafner.Positive feedbacks contribute to the robustness of the cell cycle with respect to molecular noise. Adv. in theory of control, signals. LNCIS 407, (2010) pp. 283–295 (Lévine J & Müllhaupt, eds), Springer-Verlag Berlin Heidelberg, Germany.
  46. Gérard Claude, Goldbeter Albert, From quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle, 10.3389/fphys.2012.00413
  47. Altinok A., Gonze D., Levi F., Goldbeter A., An automaton model for the cell cycle, 10.1098/rsfs.2010.0009
  48. Altinok Atilla, Lévi Francis, Goldbeter Albert, A cell cycle automaton model for probing circadian patterns of anticancer drug delivery, 10.1016/j.addr.2006.09.022
  49. A.T. Winfree.Discontinuities and singularities in the timing of nuclear division. In : Cell Cycle Clocks. L.N. Edmunds Jr, ed. Marcel Dekker, New York and Basel, (1984) pp. 63–80.
  50. L.N. Jr. Edmunds.Cellular and Molecular Bases of Biological Clocks. Models and Mechanisms for Circadian Time- keeping. Springer, New York (1988).
  51. A.T. Winfree.The Geometry of Biological Time. Springer, New York (Reprinted as Springer Study Edition, 1990, Springer, Berlin, 1980).
  52. Leloup, Am. J. Physiol. Reg. Integr. Comp. Physiol., 280, R1206 (2001)
  53. GONZE DIDIER, GOLDBETER ALBERT, A Model for a Network of Phosphorylation–dephosphorylation Cycles Displaying the Dynamics of Dominoes and Clocks, 10.1006/jtbi.2000.2294
  54. Conlon Ian, Raff Martin, 10.1186/1475-4924-2-7