User menu

Biologie des systèmes et rythmes cellulaires

Bibliographic reference Goldbeter, Albert ; Gérard, Claude ; Leloup, Jean-Christophe. Biologie des systèmes et rythmes cellulaires. In: médecine/sciences, Vol. 26, p. 49-56 (2010)
Permanent URL
  1. Goldbeter A.Biochemical oscillations and cellular rhythms : the molecular bases of periodic and chaotic behavior.Cambridge, UK : Cambridge University Press, 1996 : 606 p.
  2. Goldbeter A. Computational approaches to cellular rhythms.Nature2002; 420 : 238–45.
  3. Moore-Ede MC, Sulzman FM, Fuller CA.The clocks that time us. Physiology of the circadian timing system.Cambridge, MA : Harvard University Press, 1982 : 448 p.
  4. Young MW, Kay SA. Time zones: a comparative genetics of circadian clocks.Nat Rev Genet2001; 2 : 702–15.
  5. Reppert SM, Weaver DR. Coordination of circadian timing in mammals.Nature2002; 418 : 935–41.
  6. Hardin PE, Hall JC, Rosbash M. Feedback of theDrosophila periodgene product on circadian cycling of its messenger RNA levels.Nature1990; 343 : 536–40.
  7. Goldbeter A. A model for circadian oscillations in theDrosophilaperiod protein (PER).Proc R Soc Lond B1995; 261 : 319–24.
  8. Zeng H, Qian Z, Myers MP,et al.A light-entrainment mechanism for theDrosophilacircadian clock.Nature1996; 380 : 129–35.
  9. Leloup JC, Goldbeter A. A model for circadian rhythms inDrosophilaincorporating the formation of a complex between the PER and TIM proteins.J Biol Rhythms1998; 13 : 70–87.
  10. Glossop NRJ, Lyons LC, Hardin PE. Interlocked feedback loops within theDrosophilacircadian oscillator.Science1999; 286 : 766–8.
  11. Shearman LP, Sriram S, Weaver DR,et al.Interacting molecular loops in the mammalian circadian clock.Science2000; 288 : 1013–9.
  12. Leloup JC, Goldbeter A. Toward a detailed computational model for the mammalian circadian clock.Proc Natl Acad Sci USA2003; 100 : 7051–6.
  13. Richardson GS, Malin HV. Circadian rhythm sleep disorders: Pathophysiology and treatment.J Clin Neurophysiol1996; 13 : 17–31.
  14. Toh KL, Jones CR, He Y,et al.An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome.Science2001; 291 : 1040–3.
  15. Leloup JC, Goldbeter A. Modeling the circadian clock: from molecular mechanism to physiological disorders.BioEssays2008; 30 : 590–600.
  16. Fu L, Pelicano H, Liu J,et al.The circadian gene period2 plays an important role in tumor suppression and DNA damage responsein vivo. Cell2002; 111 : 41–50.
  17. Filipski E, King VM, Li X,et al.Host circadian clock as a control point in tumor progression.J Natl Cancer Inst2002; 94 : 690–7.
  18. Lévi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications.Annu Rev Pharmacol Toxicol2007; 47 : 593–628.
  19. Morgan DO.The cell cycle: principles of control. Oxford, UK : Oxford University Press, 2006 : 298 p.
  20. Murray AW, Kirschner MW. Cyclin synthesis drives the early embryonic cell cycle.Nature1989; 339 : 275–80.
  21. Tyson JJ. Modeling the cell division cycle: cdc2 and cyclin interactions.Proc Natl Acad Sci USA1991; 88 : 7328–32.
  22. Goldbeter A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase.Proc Natl Acad Sci USA1991; 88 : 9107–11.
  23. Chen KC, Calzone L, Csikasz-Nagy A,et al.Integrative analysis of cell cycle control in budding yeast.Mol Biol Cell2004; 15 : 3841–62.
  24. Qu Z, Weiss JN, MacLellan WR. Regulation of the mammalian cell cycle: a model of the G1-to-S transition.Am J Physiol Cell Physiol2003; 284 : 349–64.
  25. Swat M, Kel A, Herzel H. Bifurcation analysis of the regulatory modules of the mammalian G1/S transition.Bioinformatics2004; 20 : 1506–11.
  26. Novak B, Tyson JJ. A model for restriction point control of the mammalian cell cycle.J Theor Biol2004; 230 : 563–79.
  27. Sha W, Moore J, Chen K,et al.Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts.Proc Natl Acad Sci USA2003; 100 : 975–80.
  28. Pomerening JR, Sontag ED, Ferrel Jr JE. Building a cell cycle oscillator : hysteresis and bistability in the activation of Cdc2.Nat Cell Biol2003; 5 : 346–51.
  29. Gérard C, Goldbeter A. Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle.Proc Natl Acad Sci USA2009; 106 : 21643–8.
  30. Matsuo T, Yamaguchi S, Mitsui S,et al.Control mechanism of the circadian clock for timing of cell divisionin vivo. Science2003; 302 : 255–9.
  31. Altinok A, Lévi F, Goldbeter A. A cell cycle automaton model for probing circadian patterns of anticancer drug delivery.Adv Drug Deliv Rev2007; 59 : 1036–53.
  32. Nelson DE, Ihekwaba AE, Elliott M,et al.Oscillations in NF-kappaB signaling control the dynamics of gene expression.Science2004; 306 : 704–8.
  33. Lev Bar-Or R, Maya R, Segel LA,et al.Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study.Proc Natl Acad Sci USA2000; 97 : 11250–5.
  34. Ashall L, Horton CA, Nelson DE,et al.Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription.Science2009; 324 : 242–6.
  35. Garmendia-Torres C, Goldbeter A, Jacquet M. Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation.Curr Biol2007; 17 : 1044–9.
  36. Cai L, Dalal CK, Elowitz MB. Frequency-modulated nuclear localization bursts coordinate gene regulation.Nature2008; 455 : 485–90.
  37. Pourquié O. The segmentation clock: converting embryonic time into spatial pattern.Science2003; 301 : 328–30.
  38. Dequeant ML, Glynn E, Gaudenz K,et al.A complex oscillating network of signaling genes underlies the mouse segmentation clock.Science2006; 314 : 1595–8.
  39. Lewis J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator.Curr Biol2003; 13 : 1398–408.
  40. Rodriguez-Gonzalez JG, Santillan M, Fowler AC,et al.The segmentation clock in mice: Interaction between the Wnt and Notch signalling pathways.J Theor Biol2007; 248 : 37–47.
  41. Goldbeter A, Pourquié O. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways.J Theor Biol2008; 252 : 574–85.
  42. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators.Nature2000; 403 : 335–8.
  43. Atkinson MR, Savageau MA, Myers JT,et al.Development of genetic circuitry exhibiting toggle switch or oscillatory behavior inEscherichia coli. Cell2003; 113 : 597–607.
  44. Stricker J, Cookson S, Bennett MR,et al.A fast, robust and tunable synthetic gene oscillator.Nature2008; 456 : 516–9.
  45. Tigges M, Marquez-Lago TT, Stelling J,et al.A tunable synthetic mammalian oscillator.Nature2009; 457 : 309–12.
  46. Dardente H. Redondance génétique et synchronisation cellulaire dans les horloges circadiennes.Med Sci (Paris)2008; 24 : 270–6.
  47. Rouyer F. Des horloges du matin et du soir dans le cerveau de la drosophile.Med Sci (Paris)2005; 21 : 808–10.
  48. Teboul M, Delaunay F. Le récepteur nucléaire orphelin Rev-erbalpha oscille entre répression et activation.Med Sci (Paris)2003; 19 : 411–3.
  49. Pommier Y, Kohn KW. Cycle cellulaire et points de contrôle en oncologie : nouvelles cibles thérapeutiques.Med Sci (Paris)2003; 19 : 173–86.
  50. Danchin A. Saurons-nous construire une bactérie synthétique ?Med Sci (Paris)2008; 24 : 533–40.
  51. Lesne A. Biologie des systèmes : l’organisation multiéchelle des systèmes vivants.Med Sci (Paris)2009; 25 : 585–7.
  52. Comtois P, Potse M, Vinet A. Approche multi-échelle appliquée à la modélisation de l’activité électrique du cœur.Med Sci (Paris)2010; 26 : 57–63.