User menu

The neural basis of perceived intensity in natural and artificial touch.

Bibliographic reference Graczyk, Emily L ; Schiefer, Matthew A ; Saal, Hannes P ; Delhaye, Benoit ; Bensmaia, Sliman J ; et. al. The neural basis of perceived intensity in natural and artificial touch.. In: Science Translational Medicine, Vol. 8, p. 362ra142 (2016)
Permanent URL
  1. Ochoa José L., Intraneural microstimulation in humans, 10.1016/j.neulet.2009.10.007
  2. Torebj  rk, Human neurobiology, 3, 15 (1984)
  3. Ochoa J, Torebjörk E, Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand., 10.1113/jphysiol.1983.sp014873
  4. Saal Hannes P., Bensmaia Sliman J., Biomimetic approaches to bionic touch through a peripheral nerve interface, 10.1016/j.neuropsychologia.2015.06.010
  5. Tan D. W., Schiefer M. A., Keith M. W., Anderson J. R., Tyler J., Tyler D. J., A neural interface provides long-term stable natural touch perception, 10.1126/scitranslmed.3008669
  6. Dhillon G.S., Horch K.W., Direct Neural Sensory Feedback and Control of a Prosthetic Arm, 10.1109/tnsre.2005.856072
  7. Raspopovic S., Capogrosso M., Petrini F. M., Bonizzato M., Rigosa J., Di Pino G., Carpaneto J., Controzzi M., Boretius T., Fernandez E., Granata G., Oddo C. M., Citi L., Ciancio A. L., Cipriani C., Carrozza M. C., Jensen W., Guglielmelli E., Stieglitz T., Rossini P. M., Micera S., Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses, 10.1126/scitranslmed.3006820
  8. 2014, 1977 (2014)
  9. Schiefer Matthew, Tan Daniel, Sidek Steven M, Tyler Dustin J, Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis, 10.1088/1741-2560/13/1/016001
  10. Tan Daniel W, Schiefer Matthew A, Keith Michael W, Anderson J Robert, Tyler Dustin J, Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees, 10.1088/1741-2560/12/2/026002
  11. Tyler Dustin J., Neural interfaces for somatosensory feedback : bringing life to a prosthesis, 10.1097/wco.0000000000000266
  12. Muniak M. A., Ray S., Hsiao S. S., Dammann J. F., Bensmaia S. J., The Neural Coding of Stimulus Intensity: Linking the Population Response of Mechanoreceptive Afferents with Psychophysical Behavior, 10.1523/jneurosci.1486-07.2007
  13. Poulos, Journal of Neuroscience, 4, 2016 (1984)
  14. Hollins Mark, Roy Elizabeth A., Perceived Intensity of Vibrotactile Stimuli: The Role of Mechanoreceptive Channels, 10.3109/08990229609052583
  15. Talbot, Journal of Neurophysiology, 31, 301 (1968)
  16. Johnson, Journal of Neurophysiology, 37, 48 (1974)
  17. Mei, Journal of Neuroscience, 3, 2652 (1983)
  18. Burgess, Journal of Neuroscience, 3, 1572 (1983)
  19. Anani A. B., Ikeda K., Körner L. M., Human ability to discriminate various parameters in afferent electrical nerve stimulation with particular reference to prostheses sensory feedback, 10.1007/bf02457988
  20. Menia L.L., Van Doren C.L., Independence of pitch and loudness of an electrocutaneous stimulus for sensory feedback, 10.1109/86.340879
  21. Dhillon G. S., Krüger T. B., Sandhu J. S., Horch K. W., Effects of Short-Term Training on Sensory and Motor Function in Severed Nerves of Long-Term Human Amputees, 10.1152/jn.00937.2004
  22. Szeto Andrew Y. J., Lyman John, Prior Ronald E., Electrocutaneous Pulse Rate and Pulse Width Psychometric Functions for Sensory Communications, 10.1177/001872087902100212
  23. Szeto Andrew Y. J., Relationship between pulse rate and pulse width for a constant-intensity level of electrocutaneous stimulation, 10.1007/bf02407767
  24. Wheat H. E., Human Ability to Scale and Discriminate Forces Typical of Those Occurring during Grasp and Manipulation, 10.1523/jneurosci.4822-03.2004
  25. Witney Alice G., Wing Alan, Thonnard Jean-Louis, Smith Allan M., The cutaneous contribution to adaptive precision grip, 10.1016/j.tins.2004.08.006
  26. Johansson Roland S., Flanagan J. Randall, Coding and use of tactile signals from the fingertips in object manipulation tasks, 10.1038/nrn2621
  27. Stevens S. S., The Direct Estimation of Sensory Magnitudes: Loudness, 10.2307/1418112
  28. McIntyre Cameron C., Richardson Andrew G., Grill Warren M., Modeling the Excitability of Mammalian Nerve Fibers: Influence of Afterpotentials on the Recovery Cycle, 10.1152/jn.00353.2001
  29. 1, 269 (2001)
  30. Yoshida K., Horch K., Selective stimulation of peripheral nerve fibers using dual intrafascicular electrodes, 10.1109/10.243412
  31. BENSMAIA S, Tactile intensity and population codes, 10.1016/j.bbr.2008.02.044
  32. Tyler D.J., Durand D.M., Functionally selective peripheral nerve stimulation with a flat interface nerve electrode, 10.1109/tnsre.2002.806840
  33. McIntyre Cameron C., Grill Warren M., Finite Element Analysis of the Current-Density and Electric Field Generated by Metal Microelectrodes, 10.1114/1.1352640
  34. Gorman Peter H., Mortimer J. Thomas, The Effect of Stimulus Parameters on the Recruitment Characteristics of Direct Nerve Stimulation, 10.1109/tbme.1983.325041
  35. Polasek Katharine H., Hoyen Harry A., Keith Michael W., Tyler Dustin J., Human Nerve Stimulation Thresholds and Selectivity Using a Multi-contact Nerve Cuff Electrode, 10.1109/tnsre.2007.891383
  36. Polasek K.H., Hoyen H.A., Keith M.W., Kirsch R.F., Tyler D.J., Stimulation Stability and Selectivity of Chronically Implanted Multicontact Nerve Cuff Electrodes in the Human Upper Extremity, 10.1109/tnsre.2009.2032603
  37. Crago Patrick E., Peckham P. Hunter, Thrope Geoffrey B., Modulation of Muscle Force by Recruitment During Intramuscular Stimulation, 10.1109/tbme.1980.326592
  38. Bensmaïa S. J., Leung Y. Y., Hsiao S. S., Johnson K. O., Vibratory Adaptation of Cutaneous Mechanoreceptive Afferents, 10.1152/jn.00002.2005
  39. Leung Y. Y., Bensmaïa S. J., Hsiao S. S., Johnson K. O., Time-Course of Vibratory Adaptation and Recovery in Cutaneous Mechanoreceptive Afferents, 10.1152/jn.00001.2005
  40. Hollins Mark, Goble Alan K., Whitsel Barry L., Tommerdahl Mark, Time Course and Action Spectrum of Vibrotactile Adaptation, 10.3109/08990229009144707
  41. Gescheider George A., Wright John H., Effects of sensory adaptation on the form of the psychophysical magnitude function for cutaneous vibration., 10.1037/h0025746
  42. Verrillo, Sensory processes, 1, 292 (1977)
  43. Tabot G. A., Dammann J. F., Berg J. A., Tenore F. V., Boback J. L., Vogelstein R. J., Bensmaia S. J., Restoring the sense of touch with a prosthetic hand through a brain interface, 10.1073/pnas.1221113110
  44. Szeto Andrew Y. J., Saunders Frank A., Electrocutaneous Stimulation for Sensory Communication in Rehabilitation Engineering, 10.1109/tbme.1982.324948
  45. Kaczmarek K.A., Webster J.G., Bach-y-Rita P., Tompkins W.J., Electrotactile and vibrotactile displays for sensory substitution systems, 10.1109/10.68204
  46. Hollins, Sliman J. Bensmaïa, Sean W Mark, Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures, 10.1080/01421590120089640
  47. Brill, 2011, 5811 (2011)
  48. Swallow M, Fibre size and content of the anterior tibial nerve of the foot., 10.1136/jnnp.29.3.205
  49. Verdu Enrique, Ceballos Dolores, Vilches Jorge J., Navarro Xavier, Influence of aging on peripheral nerve function and regeneration, 10.1046/j.1529-8027.2000.00026.x
  50. Peterson E J, Izad O, Tyler D J, Predicting myelinated axon activation using spatial characteristics of the extracellular field, 10.1088/1741-2560/8/4/046030