User menu

Dissipative open systems theory as a foundation for the thermodynamics of linear systems

Bibliographic reference Delvenne, Jean-Charles ; Henrik Sandberg. Dissipative open systems theory as a foundation for the thermodynamics of linear systems. In: Philosophical transactions of the Royal Society of London. A, Vol. 375, p. 20160218 (2017)
Permanent URL http://hdl.handle.net/2078.1/191494
  1. Delvenne Jean-Charles, Sandberg Henrik, Finite-time thermodynamics of port-Hamiltonian systems, 10.1016/j.physd.2013.07.017
  2. Brockett R., Willems J., Stochastic control and the second law of thermodynamics, 10.1109/cdc.1978.268083
  3. Sandberg Henrik, Delvenne Jean-Charles, Newton Nigel J., Mitter Sanjoy K., Maximum work extraction and implementation costs for nonequilibrium Maxwell's demons, 10.1103/physreve.90.042119
  4. Gromov Dmitry, Caines Peter E., Stability of interconnected thermodynamic systems, 10.1109/cdc.2011.6161401
  5. Hudon N., Hoffner K., Guay M., Equivalence to dissipative Hamiltonian realization, 10.1109/cdc.2008.4739446
  6. Eberard D., Maschke B.M., van der Schaft A.J., An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes, 10.1016/s0034-4877(07)00024-9
  7. Delvenne Jean-Charles, Sandberg Henrik, Deriving thermodynamics from linear dissipativity theory, 10.1109/cdc.2015.7402284
  8. Willems Jan C., Terminals and ports, 10.1109/iscas.2010.5537039
  9. Åstrom KJ , Murray RM . 2008 Feedback systems: an introduction for scientists and engineers. Princeton, NJ: Princeton University Press.
  10. van der Schaft AJ . 2006 Port-Hamiltonian systems: an introductory survey. In Proc. the Int. Congress of Mathematicians, Madrid, Spain, 22–30 August 2006. Madrid, Spain: Asociación International Congress of Mathematicians.
  11. Barahona M., Doherty A.C., Sznaier M., Mabuchi H., Doyle J.C., Finite horizon model reduction and the appearance of dissipation in Hamiltonian systems, 10.1109/cdc.2002.1185095
  12. Caldeira A.O., Leggett A.J., Path integral approach to quantum Brownian motion, 10.1016/0378-4371(83)90013-4
  13. Brockett RW . 1999 Control of stochastic ensembles. In The Åstrom Symp. on Control, pp. 199–215. Lund, Sweden: Studentlitteratur.
  14. Stone Michael, Goldbart Paul, Mathematics for Physics : A Guided Tour for Graduate Students, ISBN:9780511627040, 10.1017/cbo9780511627040
  15. Lamb Horace, On a Peculiarity of the Wave-System due to the Free Vibrations of a Nucleus in an Extended Medium, 10.1112/plms/s1-32.1.208
  16. Johnson J. B., Thermal Agitation of Electricity in Conductors, 10.1103/physrev.32.97
  17. Nyquist H., Thermal Agitation of Electric Charge in Conductors, 10.1103/physrev.32.110
  18. Langevin, C.R. Acad. Sci. Paris, 146, 530 (1908)
  19. Zhou K , Doyle J , Glover K . 1996 Robust and optimal control. Upper Saddle River, NJ: Prentice Hall.
  20. Khalil HK . 2002 Nonlinear systems, 3rd edn. Upper Saddle River, NJ: Prentice Hall.
  21. Åström KJ . 2006 Introduction to stochastic control theory. New York, NY: Dover Publications.
  22. Mazonka O , Jarzynski C . 1999 Exactly solvable model illustrating far-from-equilibrium predictions. (http://arxiv.org/abs/cond-mat/9912121)
  23. Glansdorff P., Prigogine I., Hill Robert Nyden, Thermodynamic Theory of Structure, Stability and Fluctuations, 10.1119/1.1987158
  24. Willems Jan C., Dissipative dynamical systems part I: General theory, 10.1007/bf00276493
  25. Keizer J . 2012 Statistical thermodynamics of nonequilibrium processes. Berlin, Germany: Springer Science & Business Media.
  26. Maes Christian, Netočný Karel, Wynants Bram, Monotonic Return to Steady Nonequilibrium, 10.1103/physrevlett.107.010601
  27. Casas-Vázquez J, Jou D, Temperature in non-equilibrium states: a review of open problems and current proposals, 10.1088/0034-4885/66/11/r03
  28. Simon Herbert A., Ando Albert, Aggregation of Variables in Dynamic Systems, 10.2307/1909285
  29. Cattaneo, Compte Rendus, 247, 431 (1958)
  30. Bonetto F , Lebowitz JL , Rey-Bellet L . 2000 Fourier's law: a challenge for theorists. (http://arxiv.org/abs/math-ph/0002052)
  31. Zhou Peijie, Li Tiejun, Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond, 10.1063/1.4943096
  32. Willems Jan C., Dissipative dynamical systems Part II: Linear systems with quadratic supply rates, 10.1007/bf00276494
  33. Haddad WM , Chellaboina VS , Nersesov SG . 2008 Thermodynamics: a dynamical systems approach. Princeton, NJ: Princeton University Press.
  34. Mitter Sanjoy K., Newton Nigel J., Information and Entropy Flow in the Kalman?Bucy Filter, 10.1007/s10955-004-8781-9
  35. Sandberg Henrik, Delvenne Jean-Charles, Doyle John C., Linear-quadratic-Gaussian heat engines, 10.1109/cdc.2007.4434789
  36. Delvenne JC , Sandberg H , Doyle JC . 2007 Thermodynamics of linear systems. In Proc. the European Control Conf., Kos, Greece, 2–5 July 2007. New York, NY: IEEE.
  37. Sandberg Henrik, Delvenne Jean-Charles, Doyle John C., On Lossless Approximations, the Fluctuation- Dissipation Theorem, and Limitations of Measurements, 10.1109/tac.2010.2056450