Charlier, Christophe
[UCL]
Claeys, Tom
[UCL]
We apply the operation of random independent thinning on the eigenvalues of n×n Haar distributed unitary random matrices. We study gap probabilities for the thinned eigenvalues, and we study the statistics of the eigenvalues of random unitary matrices which are conditioned such that there are no thinned eigenvalues on a given arc of the unit circle. Various probabilistic quantities can be expressed in terms of Toeplitz determinants and orthogonal polynomials on the unit circle, and we use these expressions to obtain asymptotics as n→∞.
- Anderson G. W., An Introduction to Random Matrices, 118 (2010)
- Baik Jinho, Deift Percy, Johansson Kurt, 10.1090/s0894-0347-99-00307-0
- Basor Estelle, Asymptotic formulas for Toeplitz determinants, 10.1090/s0002-9947-1978-0493480-x
- Bleher Pavel M., Lectures on Random Matrix Models, Random Matrices, Random Processes and Integrable Systems (2011) ISBN:9781441995131 p.251-349, 10.1007/978-1-4419-9514-8_4
- Bohigas O., Pato M.P., Missing levels in correlated spectra, 10.1016/j.physletb.2004.05.065
- Bohigas O., Pato M. P., Randomly incomplete spectra and intermediate statistics, 10.1103/physreve.74.036212
- Bothner Thomas, Deift Percy, Its Alexander, Krasovsky Igor, On the Asymptotic Behavior of a Log Gas in the Bulk Scaling Limit in the Presence of a Varying External Potential I, 10.1007/s00220-015-2357-1
- Böttcher Albrecht, Silbermann Bernd, Toeplitz Operators and Determinants Generated by Symbols with One Fisher-Hartwig Singularity, 10.1002/mana.19861270108
- Charlier Christophe, Claeys Tom, Asymptotics for Toeplitz determinants: Perturbation of symbols with a gap, 10.1063/1.4908105
- Claeys T., SIGMA, 12, 031 (2016)
- Claeys T., Krasovsky I., Toeplitz determinants with merging singularities, 10.1215/00127094-3164897
- Daley D. J., Vere-Jones D., An Introduction to the Theory of Point Processes, ISBN:9780387213378, 10.1007/978-0-387-49835-5
- Deift Percy, Its Alexander, Krasovsky Igor, Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities, 10.4007/annals.2011.174.2.12
- Deift P., MSRI Publ., 65, 93 (2014)
- Deift P., Kriecherbauer T., McLaughlin K. T-R, Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, 10.1002/(sici)1097-0312(199911)52:11<1335::aid-cpa1>3.0.co;2-1
- Deift P., Zhou X., A Steepest Descent Method for Oscillatory Riemann--Hilbert Problems. Asymptotics for the MKdV Equation, 10.2307/2946540
- Ehrhardt Torsten, A Status Report on the Asymptotic Behavior of Toeplitz Determinants with Fisher-Hartwig Singularities, Recent Advances in Operator Theory (2001) ISBN:9783034895163 p.217-241, 10.1007/978-3-0348-8323-8_11
- Fisher M. E., Adv. Chem. Phys., 15, 333 (1968)
- Fokas A. S., Its A. R., Kitaev A. V., The isomonodromy approach to matric models in 2D quantum gravity, 10.1007/bf02096594
- Forrester Peter J., Mays Anthony, Finite-size corrections in random matrix theory and Odlyzko’s dataset for the Riemann zeros, 10.1098/rspa.2015.0436
- Jimbo Michio, Miwa Tetsuji, Môri Yasuko, Sato Mikio, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, 10.1016/0167-2789(80)90006-8
- K. Johansson, Random Matrices and Determinantal Processes, Mathematical Statistical Physics (Elsevier B.V., Amsterdam, 2006), pp. 1–55.
- Kallenberg O., Inst. Stat. Mimeo Ser., 908 (1974)
- Keating J. P., Snaith N. C., Random Matrix Theory and ζ(1/2+ it), 10.1007/s002200000261
- Kuijlaars A.B.J., McLaughlin K.T.-R., Van Assche W., Vanlessen M., The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on [−1,1], 10.1016/j.aim.2003.08.015
- Lavancier Frédéric, Møller Jesper, Rubak Ege, Determinantal point process models and statistical inference, 10.1111/rssb.12096
- Mehta M. L., Random Matrices, 142 (2004)
- Olver F. W. J., NIST Handbook of Mathematical Functions (2010)
- Saff Edward B., Totik Vilmos, Logarithmic Potentials with External Fields, ISBN:9783642081736, 10.1007/978-3-662-03329-6
- Simon B., Orthogonal Polynomials on the Unit Circle, 54 (2005)
- Soshnikov A, Determinantal random point fields, 10.1070/rm2000v055n05abeh000321
- Widom Harold, The Strong Szego Limit Theorem for Circular Arcs, 10.1512/iumj.1972.21.21022
- Widom Harold, Toeplitz Determinants with Singular Generating Functions, 10.2307/2373789
Bibliographic reference |
Charlier, Christophe ; Claeys, Tom. Thinning and conditioning of the circular unitary ensemble. In: Random Matrices: Theory and Applications, Vol. 6, p. 51 pages (2017) |
Permanent URL |
http://hdl.handle.net/2078.1/190609 |