User menu

Inductive Means and Sequences Applied to Online Classification of EEG

Bibliographic reference Massart, Estelle M. ; Chevallier, Sylvain. Inductive Means and Sequences Applied to Online Classification of EEG.International Conference on Geometric Science of Information(GSI 2017)In: Lecture Notes in Computer Science : Geometric Science of Information, springer,cham2017, p. 763-770
Permanent URL
  1. Barachant, A., Andreev, A., Congedo, M.: The Riemannian Potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry. In: TOBI Workshop lV, pp. 19–20 (2013)
  2. Barachant Alexandre, Bonnet Stéphane, Congedo Marco, Jutten Christian, Riemannian Geometry Applied to BCI Classification, Latent Variable Analysis and Signal Separation (2010) ISBN:9783642159947 p.629-636, 10.1007/978-3-642-15995-4_78
  3. Clerc, M., Bougrain, L., Lotte, F.: Brain-Computer Interfaces 2: Technology and Applications. Wiley, London (2016)
  4. Ho, J., Cheng, G., Salehian, H., Vemuri, B.: Recursive Karcher expectation estimators and geometric law of large numbers. In: Artificial Intelligence and Statistics, pp. 325–332 (2013)
  5. Kalunga Emmanuel K., Chevallier Sylvain, Barthélemy Quentin, Djouani Karim, Hamam Yskandar, Monacelli Eric, From Euclidean to Riemannian Means: Information Geometry for SSVEP Classification, Lecture Notes in Computer Science (2015) ISBN:9783319250397 p.595-604, 10.1007/978-3-319-25040-3_64
  6. Kalunga Emmanuel K., Chevallier Sylvain, Barthélemy Quentin, Djouani Karim, Monacelli Eric, Hamam Yskandar, Online SSVEP-based BCI using Riemannian geometry, 10.1016/j.neucom.2016.01.007
  7. Kalunga Emmanuel, Djouani Karim, Hamam Yskandar, Chevallier Sylvain, Monacelli Eric, SSVEP enhancement based on Canonical Correlation Analysis to improve BCI performances, 10.1109/afrcon.2013.6757776
  8. Massart Estelle M., Hendrickx Julien M., Absil P.-A., Matrix geometric means based on shuffled inductive sequences, 10.1016/j.laa.2017.05.036
  9. Sagae Masahiko, Tanabe Kunio, Upper and lower bounds for the arithmetic-geometric-harmonic means of positive definite matrices, 10.1080/03081089408818331
  10. Schäferm, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1), 32 (2005)
  11. van Erp Jan, Lotte Fabien, Tangermann Michael, Brain-Computer Interfaces: Beyond Medical Applications, 10.1109/mc.2012.107
  12. Yger, F., Berar, M., Lotte, F.: Riemannian approaches in brain-computer interfaces: a review. IEEE TNSRE PP, 1 (2016)