User menu

A Semiparametric and Location-Shift Copula-Based Mixture Model

Bibliographic reference Mazo, Gildas. A Semiparametric and Location-Shift Copula-Based Mixture Model. In: Journal of Classification, , p. (n/a-n/a) (2017)
Permanent URL
  1. AKAIKE, H. (1973), “Information Theory and an Extension of the Maximum Likelihood Principle”, in 2nd International Symposium on Information Theory, eds. B.N. Petrov and F. Csaki, Hungary: Akadémiai Kiadó.
  2. Akaike H., A new look at the statistical model identification, 10.1109/tac.1974.1100705
  3. Benaglia Tatiana, Chauveau Didier, Hunter David R., An EM-Like Algorithm for Semi- and Nonparametric Estimation in Multivariate Mixtures, 10.1198/jcgs.2009.07175
  4. Bordes Laurent, Chauveau Didier, Vandekerkhove Pierre, A stochastic EM algorithm for a semiparametric mixture model, 10.1016/j.csda.2006.08.015
  5. DEMPSTER, A.P., LAIRD, N.M., and RUBIN, D.B. (1977), “Maximum Likelihood from Incomplete Data via the EM Algorithm”, Journal of the Royal Statistical Society. Series B, 39, 1–38.
  6. DUONG, T. (2015), “ks: Kernel Smoothing”, R package,
  7. Forbes Florence, Wraith Darren, A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering, 10.1007/s11222-013-9414-4
  8. FRALEY, C., RAFTERY, A.E., BRENDAN, T.M., and SCRUCCA, L. (2012), mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation, Technical Report 597, Department of Statistics, University of Washington, .
  9. Genest Christian, Favre Anne-Catherine, Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask, 10.1061/(asce)1084-0699(2007)12:4(347)
  10. GENEST C., GHOUDI K., RIVEST L.-P., A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, 10.1093/biomet/82.3.543
  11. GOODD I. J., GASKINS R. A., Nonparametric roughness penalties for probability densities, 10.1093/biomet/58.2.255
  12. HARTIGAN, J.A., and WONG, M.A. (1979), “A K-Means Clustering Algorithm”, Journal of the Royal Statistical Society. Series C, 28, 100–108.
  13. Hunter David R., Wang Shaoli, Hettmansperger Thomas P., Inference for mixtures of symmetric distributions, 10.1214/009053606000001118
  14. JOE, H. (2001), Multivariate Models and Dependence Concepts, Boca Raton FL: Chapman and Hall/CRC.
  15. JOE, H. (2014), Dependence Modeling with Copulas, Chapman and Hall/CRC.
  16. Jones M. C., Marron J. S., Sheather S. J., A Brief Survey of Bandwidth Selection for Density Estimation, 10.1080/01621459.1996.10476701
  17. Kosmidis Ioannis, Karlis Dimitris, Model-based clustering using copulas with applications, 10.1007/s11222-015-9590-5
  18. Lee Sharon, McLachlan Geoffrey J., Finite mixtures of multivariate skew t-distributions: some recent and new results, 10.1007/s11222-012-9362-4
  19. Levine M., Hunter D. R., Chauveau D., Maximum smoothed likelihood for multivariate mixtures, 10.1093/biomet/asq079
  20. MARBAC, M., BIERNACKI, C., and VANDEWALLE, V. (2014), “Model-Based Clustering of Gaussian Copulas for Mixed Data”, arXiv preprint arXiv:1405.1299.
  21. Marbac Matthieu, Biernacki Christophe, Vandewalle Vincent, Model-Based Clustering for Conditionally Correlated Categorical Data, 10.1007/s00357-015-9180-4
  22. MCLACHLAN, G., and KRISHNAN, T. (2007), The EM Algorithm and Extensions (Vol. 382), New York: John Wiley and Sons.
  23. MCLACHLAN, G., and PEEL, D. (2004), Finite Mixture Models, New York: John Wiley and Sons.
  24. NELSEN, R.B. (2006), An Introduction to Copulas, New York: Springer.
  25. Redner Richard A., Walker Homer F., Mixture Densities, Maximum Likelihood and the EM Algorithm, 10.1137/1026034
  26. SAKAMOTO, Y., ISHIGURO, M., and KITAGAWA, G. (1986), Akaike Information Criterion Statistics, Tokyo: KTK Scientific Publishers.
  27. SILVERMAN, B.W. (1998), Density Estimation for Statistics and Data Analysis, London: Chapman and Hall.
  28. SKLAR, A. (1959), “Fonction de Répartition Dont les Marges Sont Données”, Institute de Statistique de l’Universite de Paris, 8, 229–231.
  29. Vrac M., Billard L., Diday E., Chédin A., Copula analysis of mixture models, 10.1007/s00180-011-0266-0
  30. WAND, M.P., and JONES, M.C. (1994), “Multivariate Plug-In Bandwidth Selection”, Computational Statistics, 9(2), 97–116.