User menu

A continuous updating weighted least squares estimator of tail dependence in high dimensions

Bibliographic reference Einmahl, John H. J. ; Kiriliouk, Anna ; Segers, Johan. A continuous updating weighted least squares estimator of tail dependence in high dimensions. In: Extremes : statistical theory and applications in science, engineering and economics, , p. (n/a-n/a) (2017)
Permanent URL
  1. Abadir Karim M., Magnus Jan R., Matrix Algebra, ISBN:9780511810800, 10.1017/cbo9780511810800
  2. Beirlant Jan, Goegebeur Yuri, Teugels Jozef, Segers Johan, Statistics of Extremes : Theory and Applications, ISBN:9780470012383, 10.1002/0470012382
  3. Beirlant Jan, Escobar-Bach Mikael, Goegebeur Yuri, Guillou Armelle, Bias-corrected estimation of stable tail dependence function, 10.1016/j.jmva.2015.10.006
  4. Bücher Axel, Segers Johan, Extreme value copula estimation based on block maxima of a multivariate stationary time series, 10.1007/s10687-014-0195-8
  5. Can Sami Umut, Einmahl John H. J., Khmaladze Estate V., Laeven Roger J. A., Asymptotically distribution-free goodness-of-fit testing for tail copulas, 10.1214/14-aos1304
  6. Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. Royal Stat. Soc. Ser. B (Stat. Methodol.) 53(2), 377–392 (1991)
  7. Davison A. C., Padoan S. A., Ribatet M., Statistical Modeling of Spatial Extremes, 10.1214/11-sts376
  8. Haan L. De, A Spectral Representation for Max-stable Processes, 10.1214/aop/1176993148
  9. de Haan Laurens, Ferreira Ana, Extreme Value Theory, ISBN:9780387239460, 10.1007/0-387-34471-3
  10. de Haan Laurens, Pereira Teresa T., Spatial extremes: Models for the stationary case, 10.1214/009053605000000886
  11. Drees Holger, Huang Xin, Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function, 10.1006/jmva.1997.1708
  12. Einmahl John H. J., Krajina Andrea, Segers Johan, An M-estimator for tail dependence in arbitrary dimensions, 10.1214/12-aos1023
  13. Einmahl John H. J., Kiriliouk Anna, Krajina Andrea, Segers Johan, AnM-estimator of spatial tail dependence, 10.1111/rssb.12114
  14. Fougères Anne-Laure, de Haan Laurens, Mercadier Cécile, Bias correction in multivariate extremes, 10.1214/14-aos1305
  15. Fougères, AL, Mercadier, C., Nolan, J.: Estimating Semi-Parametric Models for Multivariate Extreme Value Data. Working paper (2016)
  16. Gissibl, N., Klüppelberg, C.: Max-Linear Models on Directed Acyclic Graphs. To be published in Bernoulli, available at arXiv: 1512.07522 (2017)
  17. Gumbel E. J., Bivariate Exponential Distributions, 10.1080/01621459.1960.10483368
  18. Hansen, L.P., Heaton, J., Yaron, A.: Finite-sample properties of some alternative GMM estimators. J. Bus. Econ. Stat. 14(3), 262–280 (1996)
  19. Hofert, M., Kojadinovic, I., Maechler, M., Yan, J.: Copula: multivariate dependence with copulas. R package version 0.999-13 (2015)
  20. Huang, X.: Statistics of Bivariate Extreme Values. PhD thesis, Tinbergen Institute Research Series, Amsterdam (1992)
  21. Huser R., Davison A. C., Composite likelihood estimation for the Brown-Resnick process, 10.1093/biomet/ass089
  22. Huser R., Davison A. C., Space-time modelling of extreme events, 10.1111/rssb.12035
  23. Huser Raphaël, Davison Anthony C., Genton Marc G., Likelihood estimators for multivariate extremes, 10.1007/s10687-015-0230-4
  24. Jiang Jiming, Large Sample Techniques for Statistics, ISBN:9781441968265, 10.1007/978-1-4419-6827-2
  25. Kabluchko Zakhar, Schlather Martin, de Haan Laurens, Stationary max-stable fields associated to negative definite functions, 10.1214/09-aop455
  26. Kiriliouk, A.: tailDepFun: Minimum Distance Estimation of Tail Dependence Models. R package version 1.0.0. (2016)
  27. Molchanov Ilya, Convex geometry of max-stable distributions, 10.1007/s10687-008-0055-5
  28. Oesting Marco, Schlather Martin, Friederichs Petra, Statistical post-processing of forecasts for extremes using bivariate brown-resnick processes with an application to wind gusts, 10.1007/s10687-016-0277-x
  29. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, (2015)
  30. Ressel Paul, Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions, 10.1016/j.jmva.2013.02.013
  31. Ribatet, M.: SpatialExtremes: Modelling Spatial Extremes. , r package version 2.0–2 (2015)
  32. Schlather M., A dependence measure for multivariate and spatial extreme values: Properties and inference, 10.1093/biomet/90.1.139
  33. Smith, R.L.: Max-stable processes and spatial extremes, unpublished manuscript (1990)
  34. Wadsworth J. L., Tawn J. A., Efficient inference for spatial extreme value processes associated to log-Gaussian random functions, 10.1093/biomet/ast042
  35. Wang Yizao, Stoev Stilian A., Conditional sampling for spectrally discrete max-stable random fields, 10.1017/s0001867800004948