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The collection of ground truth data required for training supervised classifiers is9

usually carried out as to maximize the number of samples under time, budget and10

accessibility constraints. Yet, the performance of machine learning classifiers is, among11

other factors, sensitive to the class proportions in the training set. In this letter, the12

joint effect of the number of calibration samples and the class proportion on the accu-13

racy was systematically quantified using two state-of-the-art machine learning classifiers14

(random forests and support vector machines) in the context of binary cropland classifi-15

cation. The analysis focused on two contrasted agricultural landscapes. Results showed16

that the classifiers were more sensitive to class proportions than to sample size, though17

sample size had to reach 2,000 pixels before its effect leveled off. Optimal accuracies18

were obtained when the training class proportions were close to those actually observed19

on the ground. Then, synthetic minority over-sampling technique (SMOTE) was imple-20

mented to artificially regenerate the native class proportions in the training set. This21

resampling method led to an increase of the accuracy of up to 30%. These results have22

direct implications for (i) informing data collection strategies and (ii) optimizing clas-23

sification accuracy. Though derived for cropland mapping, the recommendations are24

generic to the problem of binary classification.25

Keywords: binary classification, accuracy, class proportions, cropland mapping,26

synthetic minority over-sampling technique27

1. Introduction28

Supervised image classification is a widely used technique for the extraction of land29

cover information from remotely sensed data. Usability and reliability of a map gen-30

erated by a supervised classification depends on its accuracy. Consequently, much31

research has been devoted to solve the issues that prevent the increase in classifi-32

cation accuracy in order to yield optimal or near-optimal outputs. Yet, achieving33

optimal classifications remains challenging for several reasons. First, different classi-34

fiers trained with the same calibration data often yield dissimilar outputs as a result35

of how they use the training data and how they partition the feature space (Huang,36

Davis, and Townshend 2002; Foody and Mathur 2004a). However, to a large ex-37

tent, accuracy also depends on the intrinsic characteristics of the calibration data38

sets. How a classifier is trained can have a larger impact on accuracy than the39
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classification technique itself. This situation has prompted research on the design40

of the training stage such as sampling design (Chen and Stow 2002), size of the41

training set (Foody and Arora 1997; Foody and Mathur 2004a), composition of the42

training set (Millard and Richardson 2015), spacing of training samples (Atkin-43

son 1991). The size of the calibration set, i.e., the number of samples available for44

training, has frequently attracted attention because of the costs involved in data45

collection. In general, studies have shown that a large number of training samples46

is beneficial (Pal and Mather 2004; Foody and Mathur 2004b) because it provides47

a more complete representation of the class populations. However, small training48

samples are attractive for practical reasons (Li et al. 2014). Numerous recommenda-49

tions were made on the optimal size of training sets (see Mather and Koch (2011);50

Van Niel, McVicar, and Datt (2005) for instance). Given the costs of collecting in51

situ calibration data, budgeted sampling approaches are often preferred. For crop-52

land mapping particularly, the crop-related samples are typically collected during53

field surveys while non-crop samples are digitized on screen based on very high54

resolution imagery. Further efforts to reduce the burden of ground truth data col-55

lection investigated the use of existing land cover maps as a source of calibration56

data (Waldner, Canto, and Defourny 2015). Conventional data collection schemes57

from either sources have generally dedicated more attention to the sample size58

than to the respective class proportions in the sample. Even with the large adop-59

tion of machine learning algorithms, which are usually more adequate to handle60

high-dimensional and multi-source data sets, the question of the appropriate dis-61

tribution to optimize a learning algorithm remains compelling. This issue has been62

intensively investigated for imbalance learning, a problem that arises when one class63

has much more samples than the others. Imbalance heavily compromises the process64

of learning, because machine learning models tend to focus on the prevalent class65

and to ignore rare classes (Japkowicz and Stephen 2002; Visa and Ralescu 2005).66

In addition, all classifiers generally present some performance loss when the data is67

unbalanced, albeit this behavior might different among classifier algorithms (Prati,68

Batista, and Silva 2015).69

In this letter, the joint effect of the number of samples and the class proportions70

on accuracy was investigated in the context of binary cropland classification. To71

that aim, two specific research questions were addressed:72

(1) What is the magnitude of the gain/loss in classification accuracy due to a73

change in class proportions and number of samples?74

(2) Can resampling strategies and a priori information on class prevalence be75

combined to optimize the performance of a classifier?76

The working hypotheses were that class proportions can significantly affect the ac-77

curacy of a classifier and that a priori information of the actual class distribution78

could be used to artificially modify them to optimize the classification accuracy.79

Throughout this article, optimal is intended in the sense of achieving the maxi-80

mum possible accuracy with a given calibration data set. These two questions were81

systematically investigated over two contrasted agricultural landscapes and for two82

state-of-the-art machine learning classifiers, namely random forest (RF) and sup-83

ports vector machines (SVM).84
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2. Data and study sites85

This study focuses on two sites located in Belgium (top left: 51.00° N, 4.50° E86

and bottom right: 49.60° N, 5.80° E) and South Africa (top left: 26.85° S, 24.55° E87

and bottom right: 30.74° S, 29.77° E). They each cover an area of 60 km x 6088

km and are dominated by cropland (see Bontemps et al. (2015) for an assessment89

of those data sets). For both sites, a 20-m multi-sensor time series consisting of90

SPOT-4 (Take 5) data and Landsat-8 data spanning from February to December91

2013 were at hand. For Landsat, only reflectances in the green, red, near infra-red92

and short wave infrared wavelengths were considered. The SPOT-4 and Landsat-93

8 images were processed with the Multi-sensor Atmospheric Correction and Cloud94

Screening processor (Hagolle et al. 2015). The time series were gap filled using linear95

interpolation and three spectral-temporal features were extracted. These spectral-96

temporal features correspond to reflectance composites at the minimum and the97

maximum of normalized difference vegetation index as well as the mean reflectance98

over the season. Such features were shown to provide high discrimination power99

between cropland and non-cropland areas (Waldner, Canto, and Defourny 2015;100

Matton et al. 2015).101

Ground truth observations from the corresponding growing season supplemented102

the satellite image time series. In Belgium, field polygons were sourced from the103

Land Parcel Identification System and non-cropland polygons were digitized based104

on very high resolution imagery. In South Africa, both cropland and non-cropland105

objects were both digitized based on very high resolution data. These reference106

data sets were evenly split at the polygon level into two independent sets to107

be used for calibration and validation, respectively. The calibration data sets108

contained between 81,000 and 85,000 pixels for Belgium and South Africa, in109

proportions corresponding to the actual cropland proportions (Table 1). Native110

cropland proportions were derived from vectorized parcel data. Hereafter, the term111

“prevalence” refers to cropland proportion as the native cropland proportion was112

dominant.113

114

Table 1.: Characteristics of the calibration and validation data sets for the two study
sites.

Site Prevalence (%) Size of training set (pixels) Size of validation set (pixels)

Belgium 62 85,342 88,788

South Africa 75 81,250 99,213

3. Methodology115

3.1. Classification methods116

SVMs are based on a binary classifier concept and on the notion of separating117

classes in a higher dimensional feature space, which is created using a kernel func-118

tion. Optimal separating hyperplanes are fitted between two classes in the feature119

space focusing on those training samples that lie at the edge of the class distribu-120

tions (Vapnik 2000). Training of SVMs includes choosing the kernel parameter γ and121

the regularization parameter C. C was set to ten and the widths of the kernels were122
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defined using heuristics. The RF classifier is an ensemble of decision trees which123

are trained based on random bootstrapped samples of the training data (Breiman124

2001). Two meta parameters must be defined: the number of trees and the number125

of features used to split the nodes in the trees. The number of trees was set to 500126

and the number of features was set to the square root of the total number of input127

features (Gislason, Benediktsson, and Sveinsson 2006).128

3.2. Monte Carlo Assessment Procedure129

The RF and SVM models were calibrated with different class prevalences ranging130

from 5 to 95% of the full training set and different sample sizes. Ten sample sizes131

were tested: 200, 375, 500, 750, 1,000, 1,500, 2,000, 3,000, 4,000, 5,000; similarly132

twelve cropland proportions were considered: 5%, 10%, 20%, 30%, 40%, 50%, 60%,133

70%, 80%, 90%, 95% plus the native prevalence. A Monte Carlo procedure was134

implemented to derive robust estimates of the model performances. 25 iterations135

were executed per combination of prevalence and sample size. The model perfor-136

mance measures were averaged over the 25 model runs. In total, the Monte Carlo137

procedure consisted of 2,700 iterations per site. Within an iteration, the calibration138

set was randomly sub-sampled to generate a new calibration subset in agreement139

with the sample size and prevalence values for that iteration. Then, the SVM and140

RF models were trained with the training subset. Finally, the output of each model141

was run against the same validation set to evaluate the model performance. Three142

accuracy measures were evaluated: the overall accuracy as well as the F -score for143

the cropland and the non-cropland classes. A locally weighted regression interpo-144

lation (Cleveland and Devlin 1988) was implemented to interpolate the accuracy145

measures.146

3.3. Resampling with synthetic minority over-sampling147

In the context of supervised classification, imbalanced calibration samples are often148

handled by over- and under-sampling to achieve a more balanced calibration data149

set. In this study, a synthetic minority over-sampling technique (SMOTE; Chawla150

et al. (2002)) was applied to generate synthetic calibration samples for the minority151

class so that the training class proportion respect their native occurrence. SMOTE’s152

core idea is to artificially generate new samples of the minority class using boot-153

strapping and k-nearest neighbors. As a hybrid method, SMOTE features both154

oversampling of the minority class and undersampling of the majority class. To cre-155

ate a synthetic sample, one randomly chosen minority class sample as well as one of156

its randomly chosen next neighbors were interpolated, so that finally a new artifi-157

cial sample of the minority class is created. In addition, the dominant class samples158

were randomly undersampled (only 90% of the samples belonging to the dominant159

class were kept). The performance of resampling the calibration data set to the160

native cropland proportion with SMOTE were evaluated following the Monte Carlo161

assessment procedure detailed previously. Paired t-tests were performed to assess if162

the differences in accuracy were significant at the 5% level.163
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4. Results164

4.1. The respective impact of the training set size and the class165

prevalence166

The performance of the RF and SVM classifiers was systematically tracked for167

different sample sizes and prevalences (Figure 1; left-hand side column). The y-168

axis is the proportion of cropland samples in the training data; the x-axis gives169

the accuracy of the model on the test set, averaged over 25 random draws of the170

training set. The black horizontal line indicates the native class prevalence.171

The classification accuracies exhibited different patterns depending on the study172

site but similar trends were obtained for both algorithms. Overall, SVMs yielded173

consistently slightly higher accuracies than RFs. In Belgium (Figure 1a), the over-174

all accuracy and the F -scores were generally high (>0.9) with exceptions for large175

(>0.75) and low (<0.25) cropland prevalences. The highest accuracies were reached176

when the native cropland prevalence was used. In South Africa (Figure 1c), the177

overall accuracy increased with the cropland prevalence from 0.55 to 0.65. High-178

est F -scores for the non-cropland class were clearly obtained for near-native class179

prevalences. The results demonstrate that the overall accuracy was mostly driven by180

the accuracy of the dominant class (the cropland class). Optimizing the accuracy of181

the classification depends on which measure one wants to optimize because different182

accuracy measures do not necessarily behave similarly (see the F -scores in South183

Africa for instance). In the present case, the goal was to identify the rare class, i.e.,184

non-cropland. The lowest accuracies were obtained for a combination of extreme185

prevalences and very low sample sizes. Highest accuracies were found when main-186

taining approximately the native class prevalences. Equal class prevalences always187

showed sub-optimal accuracies compared to the native prevalences case. Results188

also showed a stronger sensitivity to class prevalence than to the size of the training189

data set. This effect is further illustrated in Figure 2 (red line) which charts the190

evolution of accuracy observed at a training set prevalence of 25% for each sample191

size. It highlights that once a certain sample size is reached (2,000-2,500) the impact192

of adding more the calibration samples levels off.193

4.2. The impact of artificially re-generating the native prevalence194

To maximize the classification accuracy, two main observations can be derived from195

Figures 1a and 1c. First, balancing class prevalence before training (50/50) does196

not systematically improve classification accuracy. It will do so only if it brings197

the sample class prevalence closer to the native class prevalence. Second, one can198

achieve a higher accuracy with fewer samples if their prevalence is closer to the199

native prevalence. Figures 1b and 1d illustrate the effect of artificially recreating200

the native prevalence within the calibration data set before training the classifier.201

The region outside the black lines and the grey lines correspond to statistically202

significant improvements as measured by the paired t-tests at the 0.95 confidence203

level.204

Overall, SMOTEing the calibration data sets had a leveling-up effect across all205

accuracy measures for both sites and algorithms. Besides, it narrowed the spread of206

accuracies while at the same time increasing it overall. Still, the lowest accuracies207

were obtained for extreme prevalences and low sample sizes. It should be men-208

tioned that SMOTE artificially modifies the size of the sample to reach the correct209
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Figure 1.: Evolution of the accuracy measures as a results of varying sample sizes
and the class prevalences. The top row refers to the Belgian site and the bottom
row to the South African site. Figures on the right-hand side integrate a SMOTE
resampling whereas figures on the left-hand side do not.

prevalence. The assessment of the impact of size and proportion might therefore be210

blurred and more difficult to isolate. The magnitude of the effect of SMOTE was site-211

specific (Figures 1a and 1c). For Belgium, where the average accuracy was already212

high, a limited increase was observed (1-5%). For prevalences close to the native213
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Figure 2.: Evolution of the classification accuracy for a cropland class prevalence
of 25% and for different calibration set sizes. Accuracy reaches a plateau at around
2,000-3,000 samples while the use of SMOTE induces a systematic shift towards
higher accuracies. The magnitude of the shift is 3-5% in Belgium and 20-30% in
South Africa.

one, a rather small decrease in accuracy was measures (3% maximum) and it was214

not statistically significant. However, for a low cropland prevalence, the accuracy215

increased up to 15% after applying SMOTE which was a statistically significant.216

In South Africa, the benefit of SMOTE was even more striking, with significant217

improvements in accuracy of up to 30%. The effect of SMOTE is also highlighted in218

Figure 2 for a prevalence of 25%, i.e., far from the native prevalence of both sites. At219

this prevalence, differences between the SMOTE (green lines) and the non-SMOTE220

(red lines) approaches are statistically significant for both sites. Both approaches221

have a similar shape with respect to the site and the accuracy measure but SMOTE222

consistently shifted the performance of the classifiers towards higher accuracies. This223

increase was of about 3-5% for Belgium and 20-30% for South Africa. It highlights224

the interest of SMOTE for very unbalanced calibration data set.225

5. Discussion226

Results confirmed that training data have a more pronounced impact on accuracy227

than the choice of the classifier algorithm (Foody and Arora 1997) and that this228

magnitude and patterns of the response are agrosystem-specific (Waldner et al.229

2016). Furthermore, the results are also in line with previous research recommend-230

ing that the class proportions of the training data should be representative of their231

actual proportions in the landscape (Millard and Richardson 2015; Zhu et al. 2016).232

However analyzing the effect of class proportions for multi-class classifications re-233

mained generally bounded to two cases (native and equalized proportions) due to234
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the difficulty to draw some general conclusions for other class distribution. The bi-235

nary classification approach allowed quantifying the evolution of accuracy due to236

changes in the training class prevalence in a systematic fashion. Algorithms were237

found more sensitive to the class prevalence than to the sample size, especially238

when a minimum number of samples is provided (∼2,000). A priori knowledge on239

the native class proportions could therefore be used to inform both data collection240

and resampling strategies which in turn will optimize the classification accuracy.241

Conventional field data collection for crop mapping implies that entire fields are242

sampled so that the proportion of field belonging to each class is representative243

of the actual prevalence but not necessary the number of pixels. Caution should244

therefore be exercised before training a classifier such as RF or SVM on the whole245

sample set regardless of the pixel class proportions.246

A resampling algorithm (SMOTE) that adjusts the training sample proportions247

was successfully implemented to optimize accuracy. Such resampling techniques248

could prove instrumental to meet the standards of accuracy associated with reli-249

able area estimation (Waldner and Defourny 2017). Whilst simple over-sampling250

generally produced unwanted effects such as over-fitting and time overhead, under-251

sampling resulted in information loss as potentially valuable data points might be252

discarded. SMOTE addresses these limitations by changing the distribution of the253

data by interpolation method while increasing the number of minority class samples.254

It adopts artificially generated examples rather than randomly copied examples.255

Thus SMOTE can avoid the problem of over-fitting, but may also introduce noise.256

Results obtained here apply for the case of limited native class imbalance ratios257

(1:4 and 1:3) and might differ in the case of stronger imbalance, e.g., 1:1,000. It258

should be noted that the original design of the SMOTE algorithm was to boost an259

extremely rare class and consequently modify the native class proportion. Its imple-260

mentation here differs thus from the classical implementation in class-imbalanced261

classifiers (Lusa et al. 2010). Future research could extend this approach to a larger262

diversity of agrosystems, classifiers and benchmark resampling algorithms.263

6. Conclusion264

The main objective of this letter was to quantify the combined effect of the class265

proportions and size of the calibration data on classification accuracy as well as to266

assess the potential of a straight-forward resampling strategy (SMOTE) to compen-267

sate for potential negative effects of these two issues on the classification accuracy.268

Based on the results, we found that the effect of class prevalence, i.e., the class269

proportion of the calibration samples had a much stronger impact on classification270

accuracy than the total number of calibration samples when using machine learning271

algorithms for solving a binary classification problem (here: cropland classification).272

The results of this research further suggest that the class proportion of a calibration273

data set can be advantageously adjusted using a resampling strategy like SMOTE.274

This offers some positive prospects in situations when a sampling scheme consid-275

ering the actual class prevalence cannot be realized due to, for instance, financial276

or access limitations in the study area. Further, it allows to consistently increase277

the accuracy of a RF or SVM classifier, especially when the calibration sampling278

prevalence is strongly deviating from the actual one. The magnitude of the increase279

of accuracy when using SMOTE and imbalanced calibration samples was as high as280

30% in some cases. The findings of this study allow formulating a set of general rec-281
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ommendations for performing an efficient calibration sampling in the case of binary282

cropland classification:283

• Ideally, collection of calibration samples should be carried out in a statistical284

framework that allows a robust estimation of the real class proportions. In the285

case of binary cropland classification, it implies to collect samples from both286

cropland and non-cropland areas. In particular, balancing class proportions287

equally by default is contraindicated for both RFs and SVMs.288

• If the sampling units are objects and the calibration is pixel-based, the training289

sample proportions should be adapted using a resampling algorithm such as290

SMOTE to ensure that the pixel proportions follows the object proportions.291

• If the prevalence of each class is not statistically assessed, it could be approx-292

imated thanks to existing land cover maps or statistics. Such information on293

class proportions could then be used for resampling the calibration data set294

to the native proportions.295
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