User menu

Targeting Bacterial Cardiolipin Enriched Microdomains: An Antimicrobial Strategy Used by Amphiphilic Aminoglycoside Antibiotics.

Bibliographic reference El Khoury, Micheline ; Swain, Jitendriya ; Sautrey, Guillaume ; Zimmermann, Louis ; Van Der Smissen, Patrick ; et. al. Targeting Bacterial Cardiolipin Enriched Microdomains: An Antimicrobial Strategy Used by Amphiphilic Aminoglycoside Antibiotics.. In: Scientific Reports, Vol. 7, no.1, p. 10697 (2017 [1-12])
Permanent URL http://hdl.handle.net/2078.1/188408
  1. Ranjit D. K., Young K. D., The Rcs Stress Response and Accessory Envelope Proteins Are Required for De Novo Generation of Cell Shape in Escherichia coli, 10.1128/jb.00160-13
  2. Demchick P, Koch A L, The permeability of the wall fabric of Escherichia coli and Bacillus subtilis., 10.1128/jb.178.3.768-773.1996
  3. van Teeffelen S., Wang S., Furchtgott L., Huang K. C., Wingreen N. S., Shaevitz J. W., Gitai Z., The bacterial actin MreB rotates, and rotation depends on cell-wall assembly, 10.1073/pnas.1108999108
  4. Huang K. C., Mukhopadhyay R., Wen B., Gitai Z., Wingreen N. S., Cell shape and cell-wall organization in Gram-negative bacteria, 10.1073/pnas.0805309105
  5. Margalit D. N., Romberg L., Mets R. B., Hebert A. M., Mitchison T. J., Kirschner M. W., RayChaudhuri D., Targeting cell division: Small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality, 10.1073/pnas.0404439101
  6. Schulze Ryan J., Komar Joanna, Botte Mathieu, Allen William J., Whitehouse Sarah, Gold Vicki A. M., Lycklama a Nijeholt Jelger A., Huard Karine, Berger Imre, Schaffitzel Christiane, Collinson Ian, Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG–SecDF–YajC–YidC, 10.1073/pnas.1315901111
  7. Arias-Cartin Rodrigo, Grimaldi Stéphane, Arnoux Pascal, Guigliarelli Bruno, Magalon Axel, Cardiolipin binding in bacterial respiratory complexes: Structural and functional implications, 10.1016/j.bbabio.2012.04.005
  8. Mileykovskaya Eugenia, Dowhan William, Cardiolipin membrane domains in prokaryotes and eukaryotes, 10.1016/j.bbamem.2009.04.003
  9. Lin Ti-Yu, Weibel Douglas B., Organization and function of anionic phospholipids in bacteria, 10.1007/s00253-016-7468-x
  10. Arnarez C., Marrink S. J., Periole X., Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels, 10.1038/srep01263
  11. Horsefield Rob, Yankovskaya Victoria, Sexton Graham, Whittingham William, Shiomi Kazuro, Ōmura Satoshi, Byrne Bernadette, Cecchini Gary, Iwata So, Structural and Computational Analysis of the Quinone-binding Site of Complex II (Succinate-Ubiquinone Oxidoreductase) : A MECHANISM OF ELECTRON TRANSFER AND PROTON CONDUCTION DURING UBIQUINONE REDUCTION, 10.1074/jbc.m508173200
  12. Yankovskaya V., Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation, 10.1126/science.1079605
  13. Baussanne Isabelle, Bussière Antoine, Halder Somnath, Ganem-Elbaz Carine, Ouberai Myriam, Riou Mickael, Paris Jean-Marc, Ennifar Eric, Mingeot-Leclercq Marie-Paule, Décout Jean-Luc, Synthesis and Antimicrobial Evaluation of Amphiphilic Neamine Derivatives, 10.1021/jm900615h
  14. Zimmermann Louis, Bussière Antoine, Ouberai Myriam, Baussanne Isabelle, Jolivalt Claude, Mingeot-Leclercq Marie-Paule, Décout Jean-Luc, Tuning the Antibacterial Activity of Amphiphilic Neamine Derivatives and Comparison to Paromamine Homologues, 10.1021/jm401148j
  15. Zimmermann Louis, Das Indrajit, Désiré Jérôme, Sautrey Guillaume, Barros R. S. Vinicius, El Khoury Micheline, Mingeot-Leclercq Marie-Paule, Décout Jean-Luc, New Broad-Spectrum Antibacterial Amphiphilic Aminoglycosides Active against Resistant Bacteria: From Neamine Derivatives to Smaller Neosamine Analogues, 10.1021/acs.jmedchem.6b00818
  16. Sautrey G., Zimmermann L., Deleu M., Delbar A., Souza Machado L., Jeannot K., Van Bambeke F., Buyck J. M., Decout J.-L., Mingeot-Leclercq M.-P., New Amphiphilic Neamine Derivatives Active against Resistant Pseudomonas aeruginosa and Their Interactions with Lipopolysaccharides, 10.1128/aac.02536-13
  17. Sautrey Guillaume, El Khoury Micheline, dos Santos Andreia Giro, Zimmermann Louis, Deleu Magali, Lins Laurence, Décout Jean-Luc, Mingeot-Leclercq Marie-Paule, Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics : A BIOPHYSICAL STUDY, 10.1074/jbc.m115.665364
  18. Stefan Melanie I., Le Novère Nicolas, Cooperative Binding, 10.1371/journal.pcbi.1003106
  19. Epand Richard M., Epand Raquel F., Lipid domains in bacterial membranes and the action of antimicrobial agents, 10.1016/j.bbamem.2008.08.023
  20. Mileykovskaya E., Dowhan W., Visualization of Phospholipid Domains in Escherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange, 10.1128/jb.182.4.1172-1175.2000
  21. Renner L. D., Weibel D. B., Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes, 10.1073/pnas.1015757108
  22. Bernal Patricia, Muñoz-Rojas Jesús, Hurtado Ana, Ramos Juan L., Segura Ana, A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality, 10.1111/j.1462-2920.2006.01236.x
  23. Matsumoto Kouji, Kusaka Jin, Nishibori Ayako, Hara Hiroshi, Lipid domains in bacterial membranes, 10.1111/j.1365-2958.2006.05317.x
  24. Mileykovskaya Eugenia, Dowhan William, Birke Ronald L., Zheng Donghong, Lutterodt Lydia, Haines Thomas H., Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces, 10.1016/s0014-5793(01)02948-9
  25. PETIT Jean-Michel, HUET Olivier, GALLET Paul Francois, MAFTAH Abderrahman, RATINAUD Marie-Helene, JULIEN Raymond, Direct analysis and significance of cardiolipin transverse distribution in mitochondrial inner membranes, 10.1111/j.1432-1033.1994.tb18690.x
  26. Shaikh Saame Raza, Dumaual Alfred C, Jenski Laura J, Stillwell William, Lipid phase separation in phospholipid bilayers and monolayers modeling the plasma membrane, 10.1016/s0005-2736(01)00335-2
  27. Epand Richard M., Rotem Shahar, Mor Amram, Berno Bob, Epand Raquel F., Bacterial Membranes as Predictors of Antimicrobial Potency, 10.1021/ja8062327
  28. Dietrich C., Bagatolli L.A., Volovyk Z.N., Thompson N.L., Levi M., Jacobson K., Gratton E., Lipid Rafts Reconstituted in Model Membranes, 10.1016/s0006-3495(01)76114-0
  29. Baumgart T., Hammond A. T., Sengupta P., Hess S. T., Holowka D. A., Baird B. A., Webb W. W., Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles, 10.1073/pnas.0611357104
  30. Baumgart Tobias, Hunt Geoff, Farkas Elaine R., Webb Watt W., Feigenson Gerald W., Fluorescence probe partitioning between Lo/Ld phases in lipid membranes, 10.1016/j.bbamem.2007.05.012
  31. Juhasz Janos, Davis James H., Sharom Frances J., Fluorescent probe partitioning in giant unilamellar vesicles of ‘lipid raft’ mixtures, 10.1042/bj20100516
  32. Murzyn Krzysztof, Róg Tomasz, Pasenkiewicz-Gierula Marta, Phosphatidylethanolamine-Phosphatidylglycerol Bilayer as a Model of the Inner Bacterial Membrane, 10.1529/biophysj.104.048835
  33. Mouritsen O.G., Theoretical models of phospholipid phase transitions, 10.1016/0009-3084(91)90075-m
  34. Disalvo E.A., Lairion F., Martini F., Tymczyszyn E., Frías M., Almaleck H., Gordillo G.J., Structural and functional properties of hydration and confined water in membrane interfaces, 10.1016/j.bbamem.2008.08.025
  35. Parasassi T., De Stasio G., d'Ubaldo A., Gratton E., Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence, 10.1016/s0006-3495(90)82637-0
  36. Nagle John F., Tristram-Nagle Stephanie, Structure of lipid bilayers, 10.1016/s0304-4157(00)00016-2
  37. Lewis Ruthven N.A.H., McElhaney Ronald N., The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes, 10.1016/j.bbamem.2009.03.014
  38. Adler M., Tritton T.R., Fluorescence depolarization measurements on oriented membranes, 10.1016/s0006-3495(88)83179-5
  39. Mykytczuk N.C.S., Trevors J.T., Leduc L.G., Ferroni G.D., Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress, 10.1016/j.pbiomolbio.2007.05.001
  40. Shinitzky M., Barenholz Y., Fluidity parameters of lipid regions determined by fluorescence polarization, 10.1016/0304-4157(78)90010-2
  41. Baysse C., Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties, 10.1099/mic.0.28185-0
  42. Lenz Martin, Morlot Sandrine, Roux Aurélien, Mechanical requirements for membrane fission: Common facts from various examples, 10.1016/j.febslet.2009.11.012
  43. Manner Suvi, Vahermo Mikko, Skogman Malena E., Krogerus Sara, Vuorela Pia M., Yli-Kauhaluoma Jari, Fallarero Adyary, Moreira Vânia M., New derivatives of dehydroabietic acid target planktonic and biofilm bacteria in Staphylococcus aureus and effectively disrupt bacterial membrane integrity, 10.1016/j.ejmech.2015.07.038
  44. Tyagi Poonam, Singh Madhuri, Kumari Himani, Kumari Anita, Mukhopadhyay Kasturi, Bactericidal Activity of Curcumin I Is Associated with Damaging of Bacterial Membrane, 10.1371/journal.pone.0121313
  45. Wu Manhong, Hancock Robert E. W., Interaction of the Cyclic Antimicrobial Cationic Peptide Bactenecin with the Outer and Cytoplasmic Membrane, 10.1074/jbc.274.1.29
  46. Weinstein J., Yoshikami S, Henkart P, Blumenthal R, Hagins W., Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker, 10.1126/science.835007
  47. Krämer Christina E. M., Wiechert Wolfgang, Kohlheyer Dietrich, Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion, 10.1038/srep32104
  48. Dong Haohao, Zhang Zhengyu, Tang Xiaodi, Huang Shihai, Li Huanyu, Peng Bo, Dong Changjiang, Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria, 10.1038/srep30815
  49. Strahl Henrik, Bürmann Frank, Hamoen Leendert W., The actin homologue MreB organizes the bacterial cell membrane, 10.1038/ncomms4442
  50. Renner Lars D., Eswaramoorthy Prahathees, Ramamurthi Kumaran S., Weibel Douglas B., Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature, 10.1371/journal.pone.0084143
  51. Salje Jeanne, van den Ent Fusinita, de Boer Piet, Löwe Jan, Direct Membrane Binding by Bacterial Actin MreB, 10.1016/j.molcel.2011.07.008
  52. Whited A.M., Johs A., The interactions of peripheral membrane proteins with biological membranes, 10.1016/j.chemphyslip.2015.07.015
  53. Cowles Kimberly N., Gitai Zemer, Surface association and the MreB cytoskeleton regulate pilus production, localization and function in Pseudomonas aeruginosa : Pseudomonas pilus regulation and MreB, 10.1111/j.1365-2958.2010.07132.x
  54. Morgenstein Randy M., Bratton Benjamin P., Nguyen Jeffrey P., Ouzounov Nikolay, Shaevitz Joshua W., Gitai Zemer, RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis, 10.1073/pnas.1509610112
  55. Koprivnjak T., Zhang D., Ernst C. M., Peschel A., Nauseef W. M., Weiss J. P., Characterization of Staphylococcus aureus Cardiolipin Synthases 1 and 2 and Their Contribution to Accumulation of Cardiolipin in Stationary Phase and within Phagocytes, 10.1128/jb.00288-11
  56. Tsai Melody, Ohniwa Ryosuke L, Kato Yusuke, Takeshita Sayaka L, Ohta Toshiko, Saito Shinji, Hayashi Hideo, Morikawa Kazuya, Staphylococcus aureus requires cardiolipin for survival under conditions of high salinity, 10.1186/1471-2180-11-13
  57. Guo Dagang, Tropp Burton E, Cloning of the Bacillus firmus OF4 cls gene and characterization of its gene product, 10.1016/s0005-2760(97)00086-6
  58. López G.A., Heredia R.M., Boeris P.S., Lucchesi G.I., Content of cardiolipin of the membrane and sensitivity to cationic surfactants inPseudomonas putida, 10.1111/jam.13238
  59. Tan B. K., Bogdanov M., Zhao J., Dowhan W., Raetz C. R. H., Guan Z., Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates, 10.1073/pnas.1212797109
  60. Moser, R., Aktas, M., Fritz, C. & Narberhaus, F. Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Molecularmicrobiology 92, 959–972 (2014).
  61. S. López *, † , Horaci Claudia, Ruzal Sandra M., Sánchez-Rivas Carmen, Rivas Emilio A., Variations of the Envelope Composition of Bacillus subtilis During Growth in Hyperosmotic Medium, 10.1007/s002849900279
  62. Lopez C. S., Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity, 10.1099/mic.0.28345-0
  63. Yasuhiro Kanemasa, Tieko Yoshioka, Hideo Hayashi, Alteration of the phospholipid composition of Staphylo-coccus aureus cultured in medium containing NaCl, 10.1016/0005-2760(72)90251-2
  64. Catucci Lucia, Depalo Nicoletta, Lattanzio Veronica M. T., Agostiano Angela, Corcelli Angela, Neosynthesis of Cardiolipin inRhodobacter sphaeroidesunder Osmotic Stress†, 10.1021/bi048802k
  65. Vargas Carmen, Kallimanis Aris, Koukkou Anna I., Calderon María I., Canovas David, Iglesias-Guerra Fernando, Drainas Constantin, Ventosa Antonio, Nieto Joaquín J., Contribution of chemical changes in membrane lipids to the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens, 10.1016/j.syapm.2005.03.014
  66. Lusk, J. E. & Kennedy, E. P. Altered phospholipid metabolism in a sodium-sensitive mutant of Escherichia coli. Journal of bacteriology 109, 1034–1046 (1972).
  67. Sliusarenko Oleksii, Heinritz Jennifer, Emonet Thierry, Jacobs-Wagner Christine, High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics : Quantitative analysis of spatio-temporal dynamics, 10.1111/j.1365-2958.2011.07579.x
  68. Paintdakhi Ahmad, Parry Bradley, Campos Manuel, Irnov Irnov, Elf Johan, Surovtsev Ivan, Jacobs-Wagner Christine, Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis : Oufti: image analysis software, 10.1111/mmi.13264