User menu

Automation methodologies and large-scale validation for GW: Towards high-throughput GW calculations

Bibliographic reference van Setten, Michiel ; Giantomassi, Matteo ; Gonze, Xavier ; Rignanese, Gian-Marco ; Hautier, Geoffroy. Automation methodologies and large-scale validation for GW: Towards high-throughput GW calculations. In: Physical Review B, Vol. 96, no.15, p. 155207 (2017)
Permanent URL
  1. Hedin Lars, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, 10.1103/physrev.139.a796
  2. Strinati G., Mattausch H. J., Hanke W., Dynamical Correlation Effects on the Quasiparticle Bloch States of a Covalent Crystal, 10.1103/physrevlett.45.290
  3. Strinati G., Mattausch H. J., Hanke W., Dynamical aspects of correlation corrections in a covalent crystal, 10.1103/physrevb.25.2867
  4. Hybertsen Mark S., Louie Steven G., First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators, 10.1103/physrevlett.55.1418
  5. Hybertsen Mark S., Louie Steven G., Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, 10.1103/physrevb.34.5390
  6. Godby R. W., Schlüter M., Sham L. J., Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity on Addition of an Electron, 10.1103/physrevlett.56.2415
  7. Shishkin M., Kresse G., Implementation and performance of the frequency-dependentGWmethod within the PAW framework, 10.1103/physrevb.74.035101
  8. Marini Andrea, Hogan Conor, Grüning Myrta, Varsano Daniele, yambo: An ab initio tool for excited state calculations, 10.1016/j.cpc.2009.02.003
  9. Deslippe Jack, Samsonidze Georgy, Strubbe David A., Jain Manish, Cohen Marvin L., Louie Steven G., BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures, 10.1016/j.cpc.2011.12.006
  10. Ren Xinguo, Rinke Patrick, Blum Volker, Wieferink Jürgen, Tkatchenko Alexandre, Sanfilippo Andrea, Reuter Karsten, Scheffler Matthias, Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 andGWwith numeric atom-centered orbital basis functions, 10.1088/1367-2630/14/5/053020
  11. Gonze Xavier, A brief introduction to the ABINIT software package, 10.1524/zkri.220.5.558.65066
  12. Gonze X., Jollet F., Abreu Araujo F., Adams D., Amadon B., Applencourt T., Audouze C., Beuken J.-M., Bieder J., Bokhanchuk A., Bousquet E., Bruneval F., Caliste D., Côté M., Dahm F., Da Pieve F., Delaveau M., Di Gennaro M., Dorado B., Espejo C., Geneste G., Genovese L., Gerossier A., Giantomassi M., Gillet Y., Hamann D.R., He L., Jomard G., Laflamme Janssen J., Le Roux S., Levitt A., Lherbier A., Liu F., Lukačević I., Martin A., Martins C., Oliveira M.J.T., Poncé S., Pouillon Y., Rangel T., Rignanese G.-M., Romero A.H., Rousseau B., Rubel O., Shukri A.A., Stankovski M., Torrent M., Van Setten M.J., Van Troeye B., Verstraete M.J., Waroquiers D., Wiktor J., Xu B., Zhou A., Zwanziger J.W., Recent developments in the ABINIT software package, 10.1016/j.cpc.2016.04.003
  13. Schindlmayr Arno, Friedrich Christoph, Sasioglu Ersoy, Blügel Stefan, First-Principles Calculation of Electronic Excitations in Solids with SPEX, 10.1524/zpch.2010.6110
  14. Faleev Sergey V., van Schilfgaarde Mark, Kotani Takao, All-Electron Self-ConsistentGWApproximation: Application to Si, MnO, and NiO, 10.1103/physrevlett.93.126406
  15. van Setten M. J., Weigend F., Evers F., TheGW-Method for Quantum Chemistry Applications: Theory and Implementation, 10.1021/ct300648t
  16. Rieger Martin M., Steinbeck L., White I.D., Rojas H.N., Godby R.W., The GW space-time method for the self-energy of large systems, 10.1016/s0010-4655(98)00174-x
  17. Govoni Marco, Galli Giulia, Large Scale GW Calculations, 10.1021/ct500958p
  18. Martin-Samos Layla, Bussi Giovanni, SaX: An open source package for electronic-structure and optical-properties calculations in the GW approximation, 10.1016/j.cpc.2009.02.005
  19. Kutepov Andrey, Haule Kristjan, Savrasov Sergey Y., Kotliar Gabriel, Electronic structure of Pu and Am metals by self-consistent relativisticGWmethod, 10.1103/physrevb.85.155129
  20. Jiang Hong, Gómez-Abal Ricardo I., Li Xin-Zheng, Meisenbichler Christian, Ambrosch-Draxl Claudia, Scheffler Matthias, FHI-gap: A code based on the all-electron augmented plane wave method, 10.1016/j.cpc.2012.09.018
  21. Holm Bengt, von Barth Ulf, Cancellation Effects in the GW Approximation, 10.1238/physica.topical.109a00135
  22. Rinke Patrick, Qteish Abdallah, Neugebauer Jörg, Freysoldt Christoph, Scheffler Matthias, CombiningGWcalculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors, 10.1088/1367-2630/7/1/126
  23. Fuchs F., Furthmüller J., Bechstedt F., Shishkin M., Kresse G., Quasiparticle band structure based on a generalized Kohn-Sham scheme, 10.1103/physrevb.76.115109
  24. Körzdörfer Thomas, Marom Noa, Strategy for finding a reliable starting point forG0W0demonstrated for molecules, 10.1103/physrevb.86.041110
  25. Caruso F., Rinke P., Ren X., Scheffler M., Rubio A., Unified description of ground and excited states of finite systems: The self-consistentGWapproach, 10.1103/physrevb.86.081102
  26. Marom Noa, Caruso Fabio, Ren Xinguo, Hofmann Oliver T., Körzdörfer Thomas, Chelikowsky James R., Rubio Angel, Scheffler Matthias, Rinke Patrick, Benchmark ofGWmethods for azabenzenes, 10.1103/physrevb.86.245127
  27. Bruneval Fabien, Marques Miguel A. L., Benchmarking the Starting Points of theGWApproximation for Molecules, 10.1021/ct300835h
  28. Atalla Viktor, Yoon Mina, Caruso Fabio, Rinke Patrick, Scheffler Matthias, Hybrid density functional theory meets quasiparticle calculations: A consistent electronic structure approach, 10.1103/physrevb.88.165122
  29. Dauth Matthias, Caruso Fabio, Kümmel Stephan, Rinke Patrick, Piecewise linearity in theGWapproximation for accurate quasiparticle energy predictions, 10.1103/physrevb.93.121115
  30. Kaplan F., Harding M. E., Seiler C., Weigend F., Evers F., van Setten M. J., Quasi-Particle Self-ConsistentGWfor Molecules, 10.1021/acs.jctc.5b01238
  31. Ren Xinguo, Rinke Patrick, Joas Christian, Scheffler Matthias, Random-phase approximation and its applications in computational chemistry and materials science, 10.1007/s10853-012-6570-4
  32. Gulans Andris, Towards numerically accurate many-body perturbation theory: Short-range correlation effects, 10.1063/1.4900447
  33. Dixit H, Saniz R, Lamoen D, Partoens B, The quasiparticle band structure of zincblende and rocksalt ZnO, 10.1088/0953-8984/22/12/125505
  34. Klimeš Jiří, Kaltak Merzuk, Kresse Georg, PredictiveGWcalculations using plane waves and pseudopotentials, 10.1103/physrevb.90.075125
  35. van Setten Michiel J., Caruso Fabio, Sharifzadeh Sahar, Ren Xinguo, Scheffler Matthias, Liu Fang, Lischner Johannes, Lin Lin, Deslippe Jack R., Louie Steven G., Yang Chao, Weigend Florian, Neaton Jeffrey B., Evers Ferdinand, Rinke Patrick, GW100: BenchmarkingG0W0for Molecular Systems, 10.1021/acs.jctc.5b00453
  36. Friedrich Christoph, Schindlmayr Arno, Blügel Stefan, Kotani Takao, Elimination of the linearization error inGWcalculations based on the linearized augmented-plane-wave method, 10.1103/physrevb.74.045104
  37. Stankovski M., Antonius G., Waroquiers D., Miglio A., Dixit H., Sankaran K., Giantomassi M., Gonze X., Côté M., Rignanese G.-M., G0W0band gap of ZnO: Effects of plasmon-pole models, 10.1103/physrevb.84.241201
  38. Gao Weiwei, Xia Weiyi, Gao Xiang, Zhang Peihong, Speeding up GW Calculations to Meet the Challenge of Large Scale Quasiparticle Predictions, 10.1038/srep36849
  39. Lejaeghere K., Bihlmayer G., Bjorkman T., Blaha P., Blugel S., Blum V., Caliste D., Castelli I. E., Clark S. J., Dal Corso A., de Gironcoli S., Deutsch T., Dewhurst J. K., Di Marco I., Draxl C., Du ak M., Eriksson O., Flores-Livas J. A., Garrity K. F., Genovese L., Giannozzi P., Giantomassi M., Goedecker S., Gonze X., Granas O., Gross E. K. U., Gulans A., Gygi F., Hamann D. R., Hasnip P. J., Holzwarth N. A. W., Iu an D., Jochym D. B., Jollet F., Jones D., Kresse G., Koepernik K., Kucukbenli E., Kvashnin Y. O., Locht I. L. M., Lubeck S., Marsman M., Marzari N., Nitzsche U., Nordstrom L., Ozaki T., Paulatto L., Pickard C. J., Poelmans W., Probert M. I. J., Refson K., Richter M., Rignanese G.-M., Saha S., Scheffler M., Schlipf M., Schwarz K., Sharma S., Tavazza F., Thunstrom P., Tkatchenko A., Torrent M., Vanderbilt D., van Setten M. J., Van Speybroeck V., Wills J. M., Yates J. R., Zhang G.-X., Cottenier S., Reproducibility in density functional theory calculations of solids, 10.1126/science.aad3000
  40. Caruso Fabio, Dauth Matthias, van Setten Michiel J., Rinke Patrick, Benchmark ofGWApproaches for theGW100 Test Set, 10.1021/acs.jctc.6b00774
  41. Maggio Emanuele, Liu Peitao, van Setten Michiel J., Kresse Georg, GW100: A Plane Wave Perspective for Small Molecules, 10.1021/acs.jctc.6b01150
  42. van Schilfgaarde M., Kotani Takao, Faleev S., Quasiparticle Self-ConsistentGWTheory, 10.1103/physrevlett.96.226402
  43. Li Xin-Zheng, Gómez-Abal Ricardo, Jiang Hong, Ambrosch-Draxl Claudia, Scheffler Matthias, Impact of widely used approximations to theG0W0method: an all-electron perspective, 10.1088/1367-2630/14/2/023006
  44. Nabok Dmitrii, Gulans Andris, Draxl Claudia, Accurate all-electronG0W0quasiparticle energies employing the full-potential augmented plane-wave method, 10.1103/physrevb.94.035118
  45. Jain Anubhav, Ong Shyue Ping, Hautier Geoffroy, Chen Wei, Richards William Davidson, Dacek Stephen, Cholia Shreyas, Gunter Dan, Skinner David, Ceder Gerbrand, Persson Kristin A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, 10.1063/1.4812323
  46. Saal James E., Kirklin Scott, Aykol Muratahan, Meredig Bryce, Wolverton C., Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD), 10.1007/s11837-013-0755-4
  47. Curtarolo Stefano, Setyawan Wahyu, Wang Shidong, Xue Junkai, Yang Kesong, Taylor Richard H., Nelson Lance J., Hart Gus L.W., Sanvito Stefano, Buongiorno-Nardelli Marco, Mingo Natalio, Levy Ohad, AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations, 10.1016/j.commatsci.2012.02.002
  48. Perdew John P., Ernzerhof Matthias, Burke Kieron, Rationale for mixing exact exchange with density functional approximations, 10.1063/1.472933
  49. Godby R. W., Schlüter M., Sham L. J., Self-energy operators and exchange-correlation potentials in semiconductors, 10.1103/physrevb.37.10159
  50. Giantomassi M., Stankovski M., Shaltaf R., Grüning M., Bruneval F., Rinke P., Rignanese G.-M., Electronic properties of interfaces and defects from many-body perturbation theory: Recent developments and applications, 10.1002/pssb.201046094
  51. Hamann D. R., Optimized norm-conserving Vanderbilt pseudopotentials, 10.1103/physrevb.88.085117
  52. Ong Shyue Ping, Richards William Davidson, Jain Anubhav, Hautier Geoffroy, Kocher Michael, Cholia Shreyas, Gunter Dan, Chevrier Vincent L., Persson Kristin A., Ceder Gerbrand, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, 10.1016/j.commatsci.2012.10.028
  53. Cazzaniga Marco, Manini Nicola, Molinari Luca Guido, Onida Giovanni, Ab initioself-energy corrections in systems with metallic screening, 10.1103/physrevb.77.035117
  54. Rangel T., Kecik D., Trevisanutto P. E., Rignanese G.-M., Van Swygenhoven H., Olevano V., Band structure of gold from many-body perturbation theory, 10.1103/physrevb.86.125125
  55. Waroquiers David, Lherbier Aurélien, Miglio Anna, Stankovski Martin, Poncé Samuel, Oliveira Micael J. T., Giantomassi Matteo, Rignanese Gian-Marco, Gonze Xavier, Band widths and gaps from the Tran-Blaha functional: Comparison with many-body perturbation theory, 10.1103/physrevb.87.075121
  56. Huber Peter J., Robust Regression: Asymptotics, Conjectures and Monte Carlo, 10.1214/aos/1176342503
  57. Chan M. K. Y., Ceder G., Efficient Band Gap Prediction for Solids, 10.1103/physrevlett.105.196403
  58. Chang K. J., Cohen Marvin L., Electron-phonon interactions and superconductivity in Si, Ge, and Sn, 10.1103/physrevb.34.4552
  59. Manjón F. J., Hernández-Fenollosa M. A., Marí B., Li S. F., Poweleit C. D., Bell A., Menéndez J., Cardona M., Effect of N isotopic mass on the photoluminescence and cathodoluminescence spectra of gallium nitride, 10.1140/epjb/e2004-00211-1
  60. Cardona Manuel, Thewalt M. L. W., Isotope effects on the optical spectra of semiconductors, 10.1103/revmodphys.77.1173
  61. Giustino Feliciano, Louie Steven G., Cohen Marvin L., Electron-Phonon Renormalization of the Direct Band Gap of Diamond, 10.1103/physrevlett.105.265501
  62. Antonius G., Poncé S., Lantagne-Hurtubise E., Auclair G., Gonze X., Côté M., Dynamical and anharmonic effects on the electron-phonon coupling and the zero-point renormalization of the electronic structure, 10.1103/physrevb.92.085137
  63. Poncé S., Gillet Y., Laflamme Janssen J., Marini A., Verstraete M., Gonze X., Temperature dependence of the electronic structure of semiconductors and insulators, 10.1063/1.4927081
  64. Strehlow W. H., Cook E. L., Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators, 10.1063/1.3253115
  65. Scherpelz Peter, Govoni Marco, Hamada Ikutaro, Galli Giulia, Implementation and Validation of Fully RelativisticGWCalculations: Spin–Orbit Coupling in Molecules, Nanocrystals, and Solids, 10.1021/acs.jctc.6b00114
  66. Aryasetiawan F, Gunnarsson O, TheGWmethod, 10.1088/0034-4885/61/3/002
  67. Larson Paul, Dvorak Marc, Wu Zhigang, Role of the plasmon-pole model in theGWapproximation, 10.1103/physrevb.88.125205
  68. Lany Stephan, Band-structure calculations for the 3dtransition metal oxides inGW, 10.1103/physrevb.87.085112
  69. Bhandari Churna, Lambrecht Walter R. L., van Schilfgaarde Mark, Quasiparticle self-consistentGWcalculations of the electronic band structure of bulk and monolayerV2O5, 10.1103/physrevb.91.125116
  70. Shih Bi-Ching, Xue Yu, Zhang Peihong, Cohen Marvin L., Louie Steven G., Quasiparticle Band Gap of ZnO: High Accuracy from the ConventionalG0W0Approach, 10.1103/physrevlett.105.146401
  71. Usuda Manabu, Hamada Noriaki, Kotani Takao, van Schilfgaarde Mark, All-electronGWcalculation based on the LAPW method: Application to wurtzite ZnO, 10.1103/physrevb.66.125101
  72. Gori Paola, Rakel Munise, Cobet Christoph, Richter Wolfgang, Esser Norbert, Hoffmann Axel, Del Sole Rodolfo, Cricenti Antonio, Pulci Olivia, Optical spectra of ZnO in the far ultraviolet: First-principles calculations and ellipsometric measurements, 10.1103/physrevb.81.125207
  73. Friedrich Christoph, Müller Mathias C., Blügel Stefan, Band convergence and linearization error correction of all-electronGWcalculations: The extreme case of zinc oxide, 10.1103/physrevb.83.081101
  74. Friedrich Christoph, Betzinger Markus, Schlipf Martin, Blügel Stefan, Schindlmayr Arno, Hybrid functionals andGWapproximation in the FLAPW method, 10.1088/0953-8984/24/29/293201
  75. Setyawan Wahyu, Gaume Romain M., Lam Stephanie, Feigelson Robert S., Curtarolo Stefano, High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials, 10.1021/co200012w
  76. Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Hybrid functionals based on a screened Coulomb potential, 10.1063/1.1564060
  77. Heyd Jochen, Scuseria Gustavo E., Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional, 10.1063/1.1760074
  78. Krukau Aliaksandr V., Vydrov Oleg A., Izmaylov Artur F., Scuseria Gustavo E., Influence of the exchange screening parameter on the performance of screened hybrid functionals, 10.1063/1.2404663
  79. Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)], 10.1063/1.2204597
  80. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865