User menu

To what degree does the missing-data technique influence the estimated growth in learning strategies over time? A tutorial example of sensitivity analysis for longitudinal data

Bibliographic reference Coertjens, Liesje ; Donche, Vincent ; De Maeyer, Sven ; Vanthournout, Gert ; Van Petegem, Peter. To what degree does the missing-data technique influence the estimated growth in learning strategies over time? A tutorial example of sensitivity analysis for longitudinal data. In: PLoS One, Vol. 12, no.9, p. e0182615 (2017)
Permanent URL http://hdl.handle.net/2078.1/187717
  1. Zeegers Petrus, Approaches to learning in science: A longitudinal study, 10.1348/000709901158424
  2. G Molenberghs, 501 (2009)
  3. J Singer (2003)
  4. Graham John W., Donaldson Stewart I., Evaluating interventions with differential attrition: The importance of nonresponse mechanisms and use of follow-up data., 10.1037/0021-9010.78.1.119
  5. Peugh J. L., Enders C. K., Missing Data in Educational Research: A Review of Reporting Practices and Suggestions for Improvement, 10.3102/00346543074004525
  6. Rombach Ines, Rivero-Arias Oliver, Gray Alastair M., Jenkinson Crispin, Burke Órlaith, The current practice of handling and reporting missing outcome data in eight widely used PROMs in RCT publications: a review of the current literature, 10.1007/s11136-015-1206-1
  7. RUBIN DONALD B., Inference and missing data, 10.1093/biomet/63.3.581
  8. Feldman B. J., Rabe-Hesketh S., Modeling Achievement Trajectories When Attrition Is Informative, 10.3102/1076998612458701
  9. Little Roderick J. A., Rubin Donald B., Statistical Analysis with Missing Data : Little/Statistical Analysis with Missing Data, ISBN:9781119013563, 10.1002/9781119013563
  10. PD Allison, 72 (2009)
  11. G Molenberghs, 395 (2009)
  12. Enders Craig K., Missing not at random models for latent growth curve analyses., 10.1037/a0022640
  13. Mazumdar Sati, Tang Gong, Houck Patricia R., Dew Mary Amanda, Begley Amy E., Scott John, Mulsant Benoit H., Reynolds Charles F., Statistical analysis of longitudinal psychiatric data with dropouts, 10.1016/j.jpsychires.2006.09.007
  14. M Moreno-Betancur, Statistical Methods in Medical Research, 0, 1 (2013)
  15. Yang Manshu, Maxwell Scott E., Treatment effects in randomized longitudinal trials with different types of nonignorable dropout., 10.1037/a0033804
  16. Yang Manshu, Wang Lijuan, Maxwell Scott E., Bias in longitudinal data analysis with missing data using typical linear mixed-effects modelling and pattern-mixture approach: An analytical illustration, 10.1111/bmsp.12043
  17. A Crameri, Frontiers in Psychology, 6 (2015)
  18. Nicholson Jody S., Deboeck Pascal R., Howard Waylon, Attrition in developmental psychology : A review of modern missing data reporting and practices, 10.1177/0165025415618275
  19. Yang Xiaowei, Li Jinhui, Shoptaw Steven, Imputation-based strategies for clinical trial longitudinal data with nonignorable missing values, 10.1002/sim.3111
  20. Grittner Ulrike, Gmel Gerhard, Ripatti Samuli, Bloomfield Kim, Wicki Matthias, Missing value imputation in longitudinal measures of alcohol consumption : Missing value imputation in longitudinal data, 10.1002/mpr.330
  21. Demirtas Hakan, Schafer Joseph L., On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out, 10.1002/sim.1475
  22. Muthén Bengt, Asparouhov Tihomir, Hunter Aimee M., Leuchter Andrew F., Growth modeling with nonignorable dropout: Alternative analyses of the STAR*D antidepressant trial., 10.1037/a0022634
  23. E Dantan, The International Journal of Biostatistics (2008)
  24. Foster E. Michael, Fang Grace Y., , Alternative Methods for Handling Attrition : An Illustration Using Data from the Fast Track Evaluation, 10.1177/0193841x04264662
  25. Hawkinson Laura E., Griffen Andrew S., Dong Nianbo, Maynard Rebecca A., The relationship between child care subsidies and children's cognitive development, 10.1016/j.ecresq.2012.10.002
  26. Jeličić Helena, Phelps Erin, Lerner Richard M., Use of missing data methods in longitudinal studies: The persistence of bad practices in developmental psychology., 10.1037/a0015665
  27. Peeters Margot, Zondervan-Zwijnenburg Mariëlle, Vink Gerko, van de Schoot Rens, How to handle missing data: A comparison of different approaches, 10.1080/17405629.2015.1049526
  28. Johnson David R., Young Rebekah, Toward Best Practices in Analyzing Datasets with Missing Data: Comparisons and Recommendations, 10.1111/j.1741-3737.2011.00861.x
  29. JR Cheema, Review of Educational Research (2014)
  30. CK Enders (2010)
  31. RJA Little, 409 (2009)
  32. Graham John W., Missing Data Analysis: Making It Work in the Real World, 10.1146/annurev.psych.58.110405.085530
  33. Enders Craig, Bandalos Deborah, The Relative Performance of Full Information Maximum Likelihood Estimation for Missing Data in Structural Equation Models, 10.1207/s15328007sem0803_5
  34. Raudenbush Stephen W., Comparing Personal Trajectories and Drawing Causal Inferences from Longitudinal Data, 10.1146/annurev.psych.52.1.501
  35. Collins Linda M., Schafer Joseph L., Kam Chi-Ming, A comparison of inclusive and restrictive strategies in modern missing data procedures., 10.1037/1082-989x.6.4.330
  36. Little Roderick J. A., A Test of Missing Completely at Random for Multivariate Data with Missing Values, 10.1080/01621459.1988.10478722
  37. Xu S., Blozis S. A., Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data, 10.3102/1076998610375836
  38. Schafer Joseph L., Graham John W., Missing data: Our view of the state of the art., 10.1037/1082-989x.7.2.147
  39. W Wothke (2000)
  40. JJ Hox (2000)
  41. Wilkinson Leland, , Statistical methods in psychology journals: Guidelines and explanations., 10.1037/0003-066x.54.8.594
  42. RB Rubin (1987)
  43. MG Kenward (2009)
  44. JW Graham, A Multidisciplinary Journal, 10, 80 (2003)
  45. RJ Glynn, 115 (1986)
  46. Little Roderick J. A., Modeling the Drop-Out Mechanism in Repeated-Measures Studies, 10.1080/01621459.1995.10476615
  47. RJA Little, Journal of the American Statistical Association, 88, 125 (1993)
  48. JJ Heckman, Annals of Economic and Social Measurement, 4 (1976)
  49. Hedeker Donald, Gibbons Robert D., Application of random-effects pattern-mixture models for missing data in longitudinal studies., 10.1037/1082-989x.2.1.64
  50. Thijs H., Strategies to fit pattern-mixture models, 10.1093/biostatistics/3.2.245
  51. Vermunt Jan D., Relations between student learning patterns and personal and contextual factors and academic performance, 10.1007/s10734-004-6664-2
  52. Richardson Michelle, Abraham Charles, Bond Rod, Psychological correlates of university students' academic performance: A systematic review and meta-analysis., 10.1037/a0026838
  53. G Vanthournout, Education Research International (2012)
  54. V Donche, 49 (2008)
  55. Coertjens Liesje, Donche Vincent, De Maeyer Sven, van Daal Tine, Van Petegem Peter, The growth trend in learning strategies during the transition from secondary to higher education in Flanders, 10.1007/s10734-016-0093-x
  56. T Duncan (2006)
  57. BM Byrne (2010)
  58. Muthén LK, Muthén BO. Growth modeling with latent variable using Mplus: Advanced growth models, survival analysis and missing data. Mplus Short Courses2010.
  59. Germeijs Veerle, Verschueren Karine, High school students’ career decision-making process: Consequences for choice implementation in higher education, 10.1016/j.jvb.2006.10.004
  60. Busato Vittorio V., Prins Frans J., Elshout Jan J., Hamaker Christiaan, Learning styles: a cross-sectional and longitudinal study in higher education, 10.1111/j.2044-8279.1998.tb01302.x
  61. Jackling Beverley, Analysis of the learning context, perceptions of the learning environment and approaches to learning accounting: a longitudinal study, 10.1111/j.1467-629x.2005.00142.x
  62. Graham John W., Olchowski Allison E., Gilreath Tamika D., How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory, 10.1007/s11121-007-0070-9
  63. Thoemmes Felix, Rose Norman, A Cautious Note on Auxiliary Variables That Can Increase Bias in Missing Data Problems, 10.1080/00273171.2014.931799
  64. Hardt Jochen, Herke Max, Leonhart Rainer, Auxiliary variables in multiple imputation in regression with missing X: a warning against including too many in small sample research, 10.1186/1471-2288-12-184
  65. Jeličić Helena, Phelps Erin, Lerner Richard M., Why Missing Data Matter in the Longitudinal Study of Adolescent Development: Using the 4-H Study to Understand the Uses of Different Missing Data Methods, 10.1007/s10964-010-9542-5
  66. JW Graham, 1 (1999)
  67. Roy Jason, Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout Class Model, 10.1111/j.0006-341x.2003.00097.x