User menu

Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications

Bibliographic reference Gammon, P.M. ; Chan, C.W. ; Gity, F. ; Trajkovic, T. ; Kilchytska, Valeriya ; et. al. Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications.11th European Space Power Conference (Thessaloniki (Greece), du 03/10/2016 au 07/10/2016). In: Proceedings of the 11th European Space Power Conference, 2017
Permanent URL
  1. Coletti M., et al., “Solar Electric Propulsion Subsystem Architecture for an All Electric Spacecraft,” Advances in Spacecraft Technologies, p. 123, 2011.
  2. Clark S. D., et al., “BepiColombo electric propulsion thruster and high power electronics coupling test performances,” in Proc. 33rd Int. Electr. Propuls. Conf, 2013.
  3. Hoffman D. J., et al., “Concept design of high power solar electric propulsion vehicles for human exploration,” 2011.
  4. Kolawa E., “Extreme Environments Technologies for Future Space Science Missions,” NASA JPL (2007).
  5. Schwank J.R., Ferlet-Cavrois V., Shaneyfelt M.R., Paillet P., Dodd P.E., Radiation effects in SOI technologies, 10.1109/tns.2003.812930
  6. Neudeck P.G., Okojie R.S., Liang-Yu Chen, High-temperature electronics - a role for wide bandgap semiconductors?, 10.1109/jproc.2002.1021571
  7. Shea P. M., “Lateral Power MOSFETs Hardened Against Single Event Radiation Effects,” University of Central Florida Orlando, Florida, 2011.
  8. Gammon P. M., “Silicon and the wide bandgap semiconductors, shaping the future power electronic device market,” in Ultimate Integration on Silicon (ULIS), 2013 14th International Conference on, 2013, pp. 9–13.
  9. Maset E., Sanchis-Kilders E., Ejea J.B., Ferreres A., Jordan J., Esteve V., Brosselard P., Jorda X., Vellvehi M., Godignon P., Accelerated Life Test for SiC Schottky Blocking Diodes in High-Temperature Environment, 10.1109/tdmr.2009.2029090
  10. Reese B., et al., “Silicon carbide power processing unit for Hall effect thrusters,” in Aerospace Conference, 2012 IEEE, 2012, pp. 1–6.
  11. Chan C., et al., “Simulations of a lateral PiN diode on SiSiC substrate for high temperature applications,” Materials Research Forum, 2014.
  12. Barry A.L., Lehmann B., Fritsch D., Braunig D., Energy dependence of electron damage and displacement threshold energy in 6H silicon carbide, 10.1109/23.124082
  13. Sasada Yukihiro, Kurumi Takamasa, Shimizu Hideo, Kinoshita Hiroyuki, Yoshimoto Masahiro, Junction Formation via Direct Bonding of Si and 6H-SiC, 10.4028/
  14. Shinohara Hiroshi, Kinoshita Hiroyuki, Yoshimoto Masahiro, Si metal-oxide-semiconductor field-effect transistor on Si-on-SiC directly bonded wafers with high thermal conductance, 10.1063/1.2991449
  15. Li L.-G., Rubino S., Vallin Ö., Olsson J., Dynamics of SiO2 Buried Layer Removal from Si-SiO2-Si and Si-SiO2-SiC Bonded Substrates by Annealing in Ar, 10.1007/s11664-013-2861-z
  16. Lotfi S., Li L.-G., Vallin Ö., Vestling L., Norström H., Olsson J., LDMOS-transistors on semi-insulating silicon-on-polycrystalline-silicon carbide substrates for improved RF and thermal properties, 10.1016/j.sse.2011.11.019
  17. Whipple S. G., et al., “Demonstration of Hybrid Silicon-on-Silicon Carbide Wafers and Electrical Test Structures with Improved Thermal Performance,” MRS Online Proceedings Library, vol. 911, pp. null-null, 2006.
  18. Li L.-G., Vallin Ö., Lu J., Smith U., Norström H., Olsson J., Oxygen out-diffusion from buried layers in SOI and SiC–SOI substrates, 10.1016/j.sse.2009.12.011
  19. Chan C. W., et al., “Analysis of Linear-Doped Si/SiC Power LDMOSFETs Based on Device Simulation,” IEEE Transactions on Electron Devices p. (In Press), 2016
  20. Arnold E., et al., “High-temperature performance of SOI and bulk-silicon RESURF LDMOS transistors,” in Power Semiconductor Devices and ICs, 1996. ISPSD ‘96 Proceedings., 8th International Symposium on, 1996, pp. 93–96.