User menu

Raman measurements of uniaxial strain in silicon nanostructures

Bibliographic reference Urena, Ferran ; Olsen, Sarah H. ; Raskin, Jean-Pierre. Raman measurements of uniaxial strain in silicon nanostructures. In: Journal of Applied Physics, Vol. 114, no.14 (October 2013)
Permanent URL
  1. Jie Jiansheng, Zhang Wenjun, Peng Kuiqing, Yuan Guodong, Lee Chun Sing, Lee Shuit-Tong, Surface-Dominated Transport Properties of Silicon Nanowires, 10.1002/adfm.200800399
  2. Röhlig Claus-Christian, Niebelschütz Merten, Brueckner Klemens, Tonisch Katja, Ambacher Oliver, Cimalla Volker, Elastic properties of nanowires, 10.1002/pssb.201046378
  3. Sadeghian Hamed, Goosen Hans, Bossche Andre, Thijsse Barend, van Keulen Fred, On the size-dependent elasticity of silicon nanocantilevers: impact of defects, 10.1088/0022-3727/44/7/072001
  4. Olbrechts B., Rue B., Pardoen T., Flandre D., Raskin J.-P., A Novel Approach for Active Pressure Sensors in Thin Film SOI Technology, 10.1016/j.proeng.2011.12.011
  5. Tian Bian, Zhao Yulong, Jiang Zhuangde, Hu Bin, The design and analysis of beam-membrane structure sensors for micro-pressure measurement, 10.1063/1.3702809
  6. Barlian A.A., Park W.-T., Mallon J.R., Rastegar A.J., Pruitt B.L., Review: Semiconductor Piezoresistance for Microsystems, 10.1109/jproc.2009.2013612
  7. Zhang Yong, Liu Xinyu, Ru Changhai, Zhang Yan Liang, Dong Lixin, Sun Yu, Piezoresistivity Characterization of Synthetic Silicon Nanowires Using a MEMS Device, 10.1109/jmems.2011.2153825
  8. Passi Vikram, Ravaux Florent, Dubois Emmanuel, Raskin Jean-Pierre, Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires, 10.1109/memsys.2010.5442464
  9. Lee Minjoo L., Fitzgerald Eugene A., Bulsara Mayank T., Currie Matthew T., Lochtefeld Anthony, Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors, 10.1063/1.1819976
  10. Olsen S.H., O'Neill A.G., Driscoll L.S., Kwa K.S.K., Chattopadhyay S., Waite A.M., Tang Y.T., Evans A.G.R., Norris D.J., Cullis A.G., Paul D.J., Robbins D.J., High-performance nMOSFETs using a novel strained Si/SiGe CMOS architecture, 10.1109/ted.2003.815603
  11. Wang Quan, Li Xinxin, Li Tie, Bao Minhang, Zhou Wei, On-Chip Integration of Acceleration, Pressure, and Temperature Composite Sensor With a Single-Sided Micromachining Technique, 10.1109/jmems.2010.2100031
  12. Olfatnia M, Xu T, Ong L S, Miao J M, Wang Z H, Investigation of residual stress and its effects on the vibrational characteristics of piezoelectric-based multilayered microdiaphragms, 10.1088/0960-1317/20/1/015007
  13. Wolf Ingrid De, Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits, 10.1088/0268-1242/11/2/001
  14. Lockwood D. J., Baribeau J.-M., Strain-shift coefficients for phonons inSi1−xGexepilayers on silicon, 10.1103/physrevb.45.8565
  15. Peng C.-Y., Huang C.-F., Fu Y.-C., Yang Y.-H., Lai C.-Y., Chang S.-T., Liu C. W., Comprehensive study of the Raman shifts of strained silicon and germanium, 10.1063/1.3110184
  16. Nakashima S., Mitani T., Ninomiya M., Matsumoto K., Raman investigation of strain in Si∕SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands, 10.1063/1.2178396
  17. Hall John J., Electronic Effects in the Elastic Constants ofn-Type Silicon, 10.1103/physrev.161.756
  18. Turley J, Sines G, The anisotropy of Young's modulus, shear modulus and Poisson's ratio in cubic materials, 10.1088/0022-3727/4/2/312
  19. Hopcroft Matthew A., Nix William D., Kenny Thomas W., What is the Young's Modulus of Silicon?, 10.1109/jmems.2009.2039697
  20. Anastassakis E., Cantarero A., Cardona M., Piezo-Raman measurements and anharmonic parameters in silicon and diamond, 10.1103/physrevb.41.7529
  21. De Wolf Ingrid, Maes H. E., Jones Stephen K., Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment, 10.1063/1.361485
  22. M. Chu, Y. K. Sun, U. Aghoram, and S. E. Thompson,in Annual Review of Materials Research(Annual Reviews, Palo Alto, 2009), Vol. 39, p. 203.
  23. Harris Stephen J., O’Neill Ann E., Yang Wen, Gustafson Peter, Boileau James, Weber W. H., Majumdar Bhaskar, Ghosh Somnath, Measurement of the state of stress in silicon with micro-Raman spectroscopy, 10.1063/1.1808244
  24. Anastassakis E., Pinczuk A., Burstein E., Pollak F.H., Cardona M., Effect of static uniaxial stress on the Raman spectrum of silicon, 10.1016/0038-1098(70)90588-0
  25. Chandrasekhar Meera, Renucci J. B., Cardona M., Effects of interband excitations on Raman phonons in heavily dopedn−Si, 10.1103/physrevb.17.1623
  26. Miyatake Takahiro, Pezzotti Giuseppe, Validating Raman spectroscopic calibrations of phonon deformation potentials in silicon single crystals: A comparison between ball-on-ring and micro-indentation methods, 10.1063/1.3656447
  27. Poborchii Vladimir, Tada Tetsuya, Kanayama Toshihiko, Observation of the forbidden doublet optical phonon in Raman spectra of strained Si for stress analysis, 10.1063/1.3474604
  28. Ureña Ferran, Olsen Sarah H., Šiller Lidija, Bhaskar Umesh, Pardoen Thomas, Raskin Jean-Pierre, Strain in silicon nanowire beams, 10.1063/1.4765025
  29. Srikar V.T., Swan A.K., Unlu M.S., Goldberg B.B., Spearing S.M., Micro-Raman measurement of bending stresses in micromachined silicon flexures, 10.1109/jmems.2003.820280
  30. Arimoto Keisuke, Furukawa Daisuke, Yamanaka Junji, Nakagawa Kiyokazu, Sawano Kentarou, Koh Shinji, Shiraki Yasuhiro, Usami Noritaka, Changes in elastic deformation of strained Si by microfabrication, 10.1016/j.mssp.2004.09.037
  31. Poborchii Vladimir, Tada Tetsuya, Usuda Koji, Kanayama Toshihiko, Polarized Raman microscopy of anisotropic stress relaxation in strained-Si-on-insulator stripes, 10.1063/1.3660709
  32. Ganesan S, Maradudin A.A, Oitmaa J, A lattice theory of morphic effects in crystals of the diamond structure, 10.1016/0003-4916(70)90029-1
  33. Tang Dai-Ming, Ren Cui-Lan, Wang Ming-Sheng, Wei Xianlong, Kawamoto Naoyuki, Liu Chang, Bando Yoshio, Mitome Masanori, Fukata Naoki, Golberg Dmitri, Mechanical Properties of Si Nanowires as Revealed by in Situ Transmission Electron Microscopy and Molecular Dynamics Simulations, 10.1021/nl204282y
  34. Pan Hui, Feng Yuan Ping, Semiconductor Nanowires and Nanotubes: Effects of Size and Surface-to-Volume Ratio, 10.1021/nn8004872
  35. Gravier S., Coulombier M., Safi A., Andre N., Boe A., Raskin J.-P., Pardoen T., New On-Chip Nanomechanical Testing Laboratory - Applications to Aluminum and Polysilicon Thin Films, 10.1109/jmems.2009.2020380
  36. Dombrowski K. F., De Wolf I., Dietrich B., Stress measurements using ultraviolet micro-Raman spectroscopy, 10.1063/1.125044
  37. Wolf Ingrid De, Stress measurements in Si microelectronics devices using Raman spectroscopy, 10.1002/(sici)1097-4555(199910)30:10<877::aid-jrs464>;2-5
  38. Nye J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices (1985)
  39. Wortman J. J., Evans R. A., Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium, 10.1063/1.1713863
  40. Kosemura Daisuke, Ogura Atsushi, Transverse-optical phonons excited in Si using a high-numerical-aperture lens, 10.1063/1.3441042
  41. De Wolf Ingrid, Raman Spectroscopy Analysis Of Mechanical Stress Near Cu-TSVs, 10.1063/1.3615701
  42. Freund L. B., Thin Film Materials: Stress, Defect Formation, and Surface Evolution (2003)
  43. Ponomareva Inna, Srivastava Deepak, Menon Madhu, Thermal Conductivity in Thin Silicon Nanowires:  Phonon Confinement Effect, 10.1021/nl062823d
  44. Sadeghian Hamed, Goosen Johannes F.L., Bossche Andre, Thijsse Barend J., van Keulen Fred, Surface reconstruction and elastic behavior of silicon nanobeams: The impact of applied deformation, 10.1016/j.tsf.2010.01.013
  45. De Wolf Ingrid, Jian Chen, van Spengen W.Merlijn, The investigation of microsystems using Raman spectroscopy, 10.1016/s0143-8166(01)00033-1
  46. Poborchii Vladimir, Tada Tetsuya, Kanayama Toshihiko, Study of stress in a shallow-trench-isolated Si structure using polarized confocal near-UV Raman microscopy of its cross section, 10.1063/1.2825286