User menu

Efficient algorithms for finding optimal binary features in numeric and nominal labeled data

Bibliographic reference Mampaey, Michael ; Nijssen, Siegfried ; Feelders, Ad ; Konijn, Rob ; Knobbe, Arno. Efficient algorithms for finding optimal binary features in numeric and nominal labeled data. In: Knowledge and Information Systems, Vol. 42, no.2, p. 465-492 (2013)
Permanent URL http://hdl.handle.net/2078.1/186720
  1. Agrawal Rakesh, Imieliński Tomasz, Swami Arun, Mining association rules between sets of items in large databases, 10.1145/170035.170072
  2. Atzmüller M, Puppe F (2006) SD-Map—a fast algorithm for exhaustive subgroup discovery. In: Proceedings of PKDD, pp 6–17
  3. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Chapman & Hall/CRC, London
  4. Calders Toon, Dexters Nele, Gillis Joris J.M., Goethals Bart, Mining frequent itemsets in a stream, 10.1016/j.is.2012.01.005
  5. Chou P.A., Optimal partitioning for classification and regression trees, 10.1109/34.88569
  6. Conway JH, Guy RK (1996) Farey fractions and ford circles. The Book of Numbers, Springer, pp 152–154
  7. Costanigro Marco, Mittelhammer Ron C., McCluskey Jill J., Estimating class-specific parametric models under class uncertainty: local polynomial regression clustering in an hedonic analysis of wine markets, 10.1002/jae.1094
  8. De Cock D (2011) Ames, ia real estate data, 2011. http://www.amstat.org/publications/jse/
  9. Elomaa Tapio, Rousu Juho, Efficient Multisplitting Revisited: Optima-Preserving Elimination of Partition Candidates, 10.1023/b:dami.0000015868.85039.e6
  10. Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 1022–1029
  11. Frank A, Asuncion A (2010) UCI machine learning repository, http://archive.ics.uci.edu/ml
  12. Fukuda Takeshi, Morimoto Yasuhiko, Morishita Shinichi, Tokuyama Takeshi, Mining Optimized Association Rules for Numeric Attributes, 10.1006/jcss.1998.1595
  13. F�rnkranz Johannes, Flach Peter A., ROC ?n? Rule Learning?Towards a Better Understanding of Covering Algorithms, 10.1007/s10994-005-5011-x
  14. Graham R.L., An efficient algorith for determining the convex hull of a finite planar set, 10.1016/0020-0190(72)90045-2
  15. Grosskreutz Henrik, Rüping Stefan, On subgroup discovery in numerical domains, 10.1007/s10618-009-0136-3
  16. Hämäläinen Wilhelmiina, Kingfisher: an efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures, 10.1007/s10115-011-0432-2
  17. Herrera Franciso, Carmona Cristóbal José, González Pedro, del Jesus María José, An overview on subgroup discovery: foundations and applications, 10.1007/s10115-010-0356-2
  18. Kavšek B, Lavrač N, Jovanoski V (2003) Apriori-sd: adapting association rule learning to subgroup discovery. In Proceedings of intelligent data analysis (IDA), pp 230–241
  19. Klösgen W (2002) Handbook of data mining and knowledge discovery. Oxford University Press, New York
  20. Meeng M, Knobbe A (2011) Flexible enrichment with Cortana—software demo. In: Proceedings of BeneLearn, pp 117–119
  21. Novak PK, Lavrač N, Webb GI (2009) Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. J Mach Learn Res 10:377–403
  22. Nymann J.E, On the probability that k positive integers are relatively prime, 10.1016/0022-314x(72)90038-8
  23. Preparata Franco P., Shamos Michael Ian, Computational Geometry, ISBN:9781461270102, 10.1007/978-1-4612-1098-6
  24. Rényi A, Sulanke R (1963) Über die konvexe hülle von n zufällig gewälten punkten. Probab Theory Relat Fields 2:75–84
  25. Rzepakowski Piotr, Jaroszewicz Szymon, Decision trees for uplift modeling with single and multiple treatments, 10.1007/s10115-011-0434-0
  26. Sedgewick R, Bentley J (2002) Quicksort is optimal. Knuthfest, Stanford University, Stanford
  27. Wrobel Stefan, An algorithm for multi-relational discovery of subgroups, Principles of Data Mining and Knowledge Discovery (1997) ISBN:9783540632238 p.78-87, 10.1007/3-540-63223-9_108