User menu

k-Optimal: a novel approximate inference algorithm for ProbLog

Bibliographic reference Renkens, Joris ; Van den Broeck, Guy ; Nijssen, Siegfried. k-Optimal: a novel approximate inference algorithm for ProbLog. In: Machine Learning, Vol. 89, no.3, p. 215-231 (2012)
Permanent URL http://hdl.handle.net/2078.1/186663
  1. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, 10.1109/tc.1986.1676819
  2. De Raedt, L., Kimmig, A., & Toivonen, H. (2007). Problog: a probabilistic prolog and its application in link discovery. In IJCAI (pp. 2462–2467).
  3. De Raedt, L., Kimmig, A., Gutmann, B., Kersting, K., Costa, V. S., & Toivonen, H. (2010). Inductive Databases and Constraint-Based Data Mining (pp. 229–262).
  4. Gutmann, B., Kimmig, A., De Raedt, L., & Kersting, K. (2008). Parameter learning in probabilistic databases: a least squares approach. In ECML PKDD (Vol. 5211/2008, pp. 473–488).
  5. Gutmann, B., Thon, I., & De Raedt, L. (2011). Learning the parameters of probabilistic logic programs from interpretations. In ECML PKDD (Vol. 6911/2011, pp. 581–596).
  6. Hazan Elad, Safra Shmuel, Schwartz Oded, On the complexity of approximating k-set packing, 10.1007/s00037-006-0205-6
  7. Ourfali O., Shlomi T., Ideker T., Ruppin E., Sharan R., SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments, 10.1093/bioinformatics/btm170
  8. Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In International conference on logic programming (pp. 715–729). Cambridge: MIT Press.
  9. Van den Broeck, G., Thon, I., van Otterlo, M., & De Raedt, L. (2010). DTProbLog: a decision-theoretic probabilistic prolog. In AAAI (pp. 1217–1222).